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abstract: Models of the Fisher‐Lande process (FLP) have been
used successfully to explore many aspects of evolution by sexual se-
lection. Despite this success, quantitative tests of these models using
data from sexual radiations are rare. Consequently, we do not know
whether realistic versions of the FLP can account for the extent and
the rate of evolution of sexually selected traits. To answer this ques-
tion, we generalize the basic FLP model of sexual coevolution and
compare predictions of that basic model with patterns observed in
an iconic sexual radiation, birds of paradise. Our model tracks the co-
evolution of male and female traits (two in each sex) while relaxing
some restrictive assumptions. Using computer simulations, we evalu-
ate the behavior of the model and confirm that it is an Ornstein‐
Uhlenbeck (OU) process. We also assess the ability of the FLP to ac-
count for the quantitative aspects of ornament evolution in the genus
Paradisaea using published measurements of display traits and a phy-
logeny of the genus. Finally, we use the program OUwie to compare
model fits to generic OU and Brownian motion processes and to esti-
mate FLP parameters. We show that to explain the sexual radiation
of the genus Paradisaea one must either invoke extremely weak stabi-
lizing selection on female mating preferences or allow the preference
optimum to undergo Brownian motion at a modest rate.

Keywords: phenotypic tango, adaptive radiation, Brownian motion,
Ornstein‐Uhlenbeck (OU) process, sexual coevolution.

Introduction

Quantitative genetic models for evolution by sexual selec-
tion have proliferated even though tests with data have been
neglected. This neglect is surprising, since quantitative ge-
netic models of phenotypic models, unlike population ge-
netic models, have enormous potential for evaluation in
natural populations (Mead and Arnold 2004). The three
dozen or so elaborations of Lande’s (1981) quantitative ge-
netic model have included male and female genetic quality
in addition to ornaments and preferences, such that a large
array of processes have been modeled (e.g., sexy son, good
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genes, good parents, sexual conflict; Mead and Arnold
2004; Kuijper et al. 2012). Considering just the combina-
tions that result from parameters with two states, more than
250,000 models are now under discussion in the literature.
Instead of tackling the enormous task of testing this huge
diversity of models, we focus on the basic model that is at
the core of the model diversity and outline an approach
for testing that basic model—as well as its extensions—with
data from sexual radiations. Our approach in testing this
basic model could be applied to any of the more elaborate
models that have been derived from it.
According to the basic model, sketched by Fisher (1915,

[1930] 1958) and specified by Lande (1981), a sexually se-
lected male trait coevolves with female preference for that
trait. In the basic model, the female mate choice confers
no direct benefits and incurs no costs. The model results
in a coevolutionary process that has unstable (runaway)
or stable (walk‐toward) outcomes. This duality of outcomes
also occurs in virtually all of the models based on Lande’s
(1981) model (Mead and Arnold 2004). Given this duality,
it is problematic to refer to the process as Fisher’s runaway,
especially since the walk‐toward outcome requires less ex-
treme genetic assumptions and so may be more probable
than the runaway. Following a number of authors (e.g.,
Grafen 1990; Wedekind 1994; Ritchie 2007; Danchin et al.
2008; Hoglund and Alatalo 2014), we refer to the process
described by the basic model as the Fisher‐Lande process
(FLP).
To achieve our goal of testing the FLP with data from sex-

ual radiations, we use amodified version of the basic model.
First, we accept the argument of Pomiankowski (1987) and
many subsequent authors that selection is likely to act on
female mating preferences. We follow the standard conven-
tion of modeling stabilizing selection on preferences (e.g.,
Kirkpatrick 1985, 1996; Pomiankowski et al. 1991; Iwasa
and Pomiankowski 1995; Day 2000), but we use a Gaussian
form so that selection on the preference can be related to
natural selection on the male trait. Second, we allow drift
as well as selection to act on the traits (Lande 1981; Uyeda
et al. 2009). This model feature is an antidote to selection
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on preference, which will tend to drive the population to
point equilibria and so eliminate the possibility of a sexual
radiation (Lande 1981; Kirkpatrick 1982; Lande and Arnold
1985). Third, we model multiple male traits and multiple
preferences so that we might account for the multivariate
nature of sexual radiations.

The combination of multiple traits and selection on
preferences is relatively unusual in the quantitative genetic
modeling literature. Pomiankowski and Iwasa (1993, 1998)
explored models of this type (without drift), but their goal
was to define the conditions for perpetual evolution via sta-
ble limit cycles. Because of that goal, they employed unusual
forms for stabilizing selection on traits and preferences that
cannot be easily related to the empirical literature on selec-
tion. We are skeptical that stable limit cycles provide a gen-
eral explanation for sexual radiations because in the context
of the FLP they require unusual forms of selection that are
unprecedented in the empirical literature as well as a deli-
cate and implausibly fragile balance of parameter values.
For these reasons, we sought a general explanation of sexual
radiation using stochastic versions of the quantitative ge-
netic theory that produce perpetual evolution.

Our specific goals are to (1) specify a modified version of
the basic model of the FLP that relaxes three assumptions
(infinite population size, single traits in both sexes, no se-
lection on preferences), (2) explore the properties of that
model with computer simulations, and, finally, (3) assess
the ability of the model to account for sexual radiation us-
ing the example of birds of paradise and (4) use the OUwie
model testing framework (Beaulieu et al. 2012) to estimate
key parameters of the FLP.

We refer to our version of the basic model as the pheno-
typic tango model because the ornament and preference
means of a lineage appear to dance through time. A molec-
ular version of this multivariate process, termed the molec-
ular tango, describes the perpetual coevolutionary dance of
male and female proteins but without the benefit of a for-
mal model (Palmer et al. 2005, 2007, 2010; Symonds and
Elgar 2008; Wyatt 2014).

In the following discussions, we follow the common tra-
dition of referring to the male traits that are the focus of
female mate choice as “ornaments.” By this evocative short-
hand, we refer to any male trait that affects the probabil-
ity of successfully mating with the female (e.g., genitalia)
as well as elaborate plumage. Likewise, the corresponding
female mating “preference” is shorthand for any aspect of
behavior, physiology, or morphology that interacts with
particular ornament(s) and affects the success of the sex-
ual interaction (i.e., sperm transfer resulting in progeny
production).

We outline an approach using multiple models that
should be generally applicable to the analysis of tree‐based
data on male ornaments that are continuously distributed
within and among populations. We use a sexual radiation
in birds of paradise to illustrate this general approach. We
show that a model of the FLP can be used to account for
both the quantitative and the qualitative details of the sex-
ual radiation in these birds. We also show that testing
frameworks that discriminate between alternative models
of process can be used to analyze sexual radiations. These
successes argue that much can be learned about the sexual
radiations by using analytical approaches that take into ac-
count inheritance, selection, drift, and phylogeny. Before de-
tailing our modeling approach, we first review some relevant
aspects of bird of paradise biology that motivate some mod-
eling choices.
Birds of paradise have evolved extraordinary diversifica-

tion in male plumage and behavioral displays over a pe-
riod of about 26million years (Irestedt et al. 2009). Plumage
modifications are extensive in both morphology and col-
oration, often in ways unprecedented in the entire history
of birds (Scholes 2008; Laman and Scholes 2014). The ex-
traordinary male plumage of birds of paradise is presented
to the female in intricate displays, during which the male
adopts characteristic postures that reveal hidden features of
plumage (Dinsmore 1970; Firth 1976; LeCroy 1981; Pruett‐
Jones and Pruett‐Jones 1990). Throughout the radiation,
displaying males use plumage and abrupt changes in pos-
ture to suddenly create novel, colorful shapes, behavioral
events known as shape‐shifting (fig. 1). During shape‐
shifting, the displaying male suddenly creates a static shape
with his plumage and then bounces, rocks, or hops in a repet-
itive pattern that may continue for several minutes. Unique
vocalizations often accompany the static and dynamic stage
of display (Scholes 2008). Female choice is almost certainly
the primary force that drives the remarkable display radi-
ation of birds of paradise. Pulling all these facets of display
history together, we see a pattern of perpetual evolution in
many coordinated features of male plumage, behavior, and
vocalization that informs our modeling effort. These three
display features are organized in functional complexes that
create ever‐evolving static and moving displays that appar-
ently affect the sexual receptivity of the female. With this
context in mind, we pose our central question: What model
of phenotypic evolution can explain the sexual radiation of
birds of paradise? A leading contender in that search for ex-
planation is the FLP, often and misleadingly known as the
runaway process.
Methods

Description of the Phenotypic Tango

Our model for the phenotypic tango is based on Lande’s
(1981) model for the coevolution of sex‐limited phenotypic
traits. Several detailed explications of that model are avail-
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able (Maynard Smith 1982; Arnold 1983, 1985; Mead and
Arnold 2004; Kuijper et al. 2012), so only an abbreviated ac-
count is provided here. Our model closely follows Lande’s
model in assumptions, formulation, and notation, with four
important exceptions (app. A). First, we model the evolu-
tion of two traits in each sex instead of just one so that evo-
lution proceeds in a two‐dimensional trait space, or “dance
floor.” Second, we allow stabilizing natural (e.g., viability)
selection on preference as well as on ornament, whereas
in the original Lande model only the ornament experienced
stabilizing natural selection. Third, as in Lande (1981) but
unlike in most quantitative genetic models of sexual coevo-
lution, we allow the population to be finite in size. Conse-
quently, the trait means tend to drift away from their natu-
ral selection optima every generation. The consequences
of finite population size have been thoroughly explored in
related Ornstein‐Uhlenbeck (OU) models (Lande 1976b,
1979), and we apply those results to our system (app. A). Fi-
nally, we allow the natural selection optima for preferences
to move as a function of time. For simplicity, we use a
Brownianmotion (BM)model for that bivariatemovement.

We will often plot the results of our model in two di-
mensions even though we model the evolution of four traits.
Imagine two continuously distributed male ornaments that
are the focus of female mate choice. Likewise, imagine that
the preferences for those ornaments are two continuously
distributed female traits. Because each female most prefers
to mate with a male with particular ornament values (e.g.,
a tail length of 20 cm and a wing length of 10 cm), we can
plot her two preference values and the ornament values for
that particular male in the same two‐trait space. When the
two points representing the ornament and preference are
close together, mating is likely to occur between the male
and female mating partners with those trait values. Con-
versely, when values for ornament and preference are far
apart in trait space, mating is less likely. A variety of states
for both ornaments and preferences exist in a population
of males and females. We can summarize the entire popula-
tion of mating partners by plotting the means for ornaments
and preferences in the same way that we plotted the posi-
tions of states for individual males and females. We also
can visualize the coevolution of ornament and preference as
themovement of bivariate trait means in our two‐trait space.
In the next few sections, we present a formal version of this
model, which will be needed to make quantitative predic-
tions that can be tested with data.
Our model assumes that the phenotypic values of the two

ornaments (z1 and z2) as well as the two preferences (y1 and
y2) are the sums of genetic and environmental values. Ge-
netic and environmental values are assumed to be indepen-
dent and normally distributed. The model can accommo-
date any pattern of genetic correlation among the four
traits (app. A), but for simplicity we will allow only one kind
of between‐sex correlation, that is, correlation between traits
z1 and y1 and between z2 and y2.
Two selective forces drive the evolution of the ornaments

(z1 and z2). First, bivariate stabilizing selection tends to pull
the ornament means toward an intermediate natural (via-
bility) selection optimum. This stabilizing selection is mod-
eled with a Gaussian (bell‐shaped) function with a width
Figure 1: Two male birds of paradise (Paradisaea apoda) displaying to a female, showing the role of the wings and tail in forming a static
shape (from a photograph by Tim Laman in Laman and Scholes [2014]). A video by Tim Laman of events surrounding the image shown here
is available at https://www.facebook.com/Birds.Lovers.1/videos/1003571246388699/.

https://www.facebook.com/Birds.Lovers.1/videos/1003571246388699/
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parameter (qzii) analogous to a variance. This selection
slightly restricts the statistical availability of ornaments to
preferences. Second, the two preference traits (y1 and y2)
exert directional sexual selection on the ornaments. Each
female is most inclined to mate with a male whose orna-
ments z1 and z2 most closely match, respectively, the values
of her preferences y1 and y2. In other words, her preferences
are absolute rather than relative (Lande 1981). Her ten-
dency to mate with a male is modeled as a bivariate Gauss-
ian function with personal optima given by y1 and y2 and a
width parameter nii that is common to all females. The more
the male’s ornament departs from her personal optimum,
the less likely she is to mate with him. From these assump-
tions, one can compute the total force of sexual selection on
each of the ornaments (app. A). Furthermore, as shown by
Lande (1981), the combination of assortative mating (i.e.,
between z1 and y1 and between z2 and y2) and sexual selec-
tion creates linkage disequilibrium between certain orna-
ment alleles and certain preference alleles. That disequilib-
rium in turn is expressed as a positive genetic covariance,
Bii, between the trait pairs z1, y1 and z2, y2.

Preferences (y1 and y2) experience only bivariate Gauss-
ian stabilizing selection that tends to pull their means to-
ward an intermediate bivariate natural selection (viability)
optimum. This stabilizing natural selection (qyii) affects the
availability of preferences to ornaments. This stabilizing se-
lection can be stronger or weaker than the stabilizing selec-
tion that acts on ornaments. The bivariate optimum for
preferences may be the same or different than the ornament
optimum. Unlike the ornaments, however, preferences do
not experience sexual selection. In other words, we assume
that all surviving females mate; the preferences of a female
do not affect her mating success or fecundity.

In the absence of sexual selection on the ornaments, the
ornament mean will eventually attain an evolutionary equi-
librium in which the average tendency to move toward the
natural selection optimum due to stabilizing selection is
balanced by an average tendency to drift away from the
optimum. If we examine a large number of replicate popu-
lations that have attained this selection‐drift balance, their
bivariate ornament means will be normally distributed
about the optimum (app. A). At equilibrium with uncorre-
lated ornaments, the variance among lineages in ornament
mean is expected to be

qzii 1 Pii

2N e

, ð1Þ

where Pii is the within‐population phenotypic variance of
the ith ornament and Ne is the within‐lineage effective pop-
ulation size (Lande 1976b). In the absence of sexual selec-
tion, the bivariate preference mean will eventually achieve
a similar equilibrium in which the preferences means of rep-
licate lineages are normally distributed about the bivariate
preference optimum. We might not expect either of these
equilibria to be achieved if the ornaments experience sexual
selection. But given the more complicated selection scheme
in our model, how exactly does the equilibrium differ from
simple drift‐selection balance? We will present an analytical
solution to this question based on the deterministic equa-
tions for the process. How rapidly is that more complicated
equilibrium achieved? Normally this question would be an-
swered with a stability analysis based on an analytical solu-
tion to the dynamic equations for a model such as ours. Un-
fortunately, we lack an analytical solution to the stochastic
version of our model. Consequently, we will use computer
simulations to answer fundamental questions about the dy-
namic properties of the phenotypic tango.
Simulation Procedures

Qualitative Predictions from the Phenotypic Tango Model.
To explore the deterministic behavior of themodel, we elim-
inated the stochastic contribution of drift to trait change
each generation and then varied the contributions of start-
ing position in trait space, the positions of the trait optima
relative to one other, and the magnitude of genetic correla-
tion between the sexes.
In using simulations to explore themodel’s stochastic be-

havior, we focused on parameters whose contributions to
the phenotypic tango could not be predicted easily a priori
(table 1). For example, because genetic variance increases
rates of drift and responses to selection, we expect a priori
that it will increase the tempo of the tango. We assume that
genetic variances have equilibrated under the prevailing
forces of mutation, drift, and selection (Lande 1976a; Bür-
ger and Lande 1994; Jones et al. 2003), and consequently
we fix the genetic variance of each of the four traits at an in-
termediate, empirically observed value of 0.4 (Estes and
Arnold 2007). In contrast, the relative strengths of stabiliz-
ing selection (qzii and qyii) and mate preference (nii) have
less obvious effects on the anticipated tango. Consequently,
we examined the effects of these parameters in some detail.
In each computer run, we exposed 25 or 100 independent,
replicate populations to the same parameter values and fol-
lowed the evolution of bivariate ornament and preference
means for 500 generations. Preliminary runs revealed that
500 generations was generally sufficient for the trait means
of replicate lineages to achieve an equilibrium pattern un-
der most of the combinations of parameter values that
we explored, but in exceptional cases tens of thousands of
generations were required and simulations were run for
100,000 generations (table 2). For simplicity and ease of in-
terpretation of results, we employ a set of standard conven-
tions. For example, in most runs we let natural selection
optima coincide for ornaments and preferences and started
all replicate lineages at that same point in trait space.



Testing the Fisher‐Lande Process 721
We summarized the results of each run in a generation‐
by‐generation animation that enabled us to rapidly assess
the effects of a change in one or more parameters. We use
95% confidence ellipses to portray the outcomes expected
for ornament and preference means in the absence of sex-
ual selection. These ellipses represent the dance floors that
we would expect in the absence of mate choice. Under that
condition, 95% of replicate lineage means are expected to
reside within the boundaries of the ellipse. As time unfolds
from starting conditions, replicate lineage means spread
out, away from the natural optimum as they move toward
a drift‐stabilizing selection balance. The 95% confidence el-
lipse expands as time proceeds and then achieves a final
equilibrium size (app. A). We portray the temporally ex-
panding ellipse with a narrow line and the final equilib-
rium ellipse with a bold solid line. We also show the 95%
confidence ellipses for the evolving clouds of ornament
and preference means with narrow lines. These data ellipses
are usually not perfect circles and so can be distinguished
from the expected 95% confidence ellipses. Turning to re-
sults that were apparent in animations of our computer
runs, we first consider the evolutionary trajectories of an in-
dividual lineage responding to drift and selection and then
turn to trajectories of sets of 25 or 100 replicate lineages.
Animated versions of the static figures that follow can be
viewed at http://phenotypicevolution.com/?pp221. A sum-
mary of the parameters used in the figure simulations is pro-
vided in table 2. An example of R script used to produce the
figures is provided in the Dryad Digital Repository: http://
dx.doi.org/10.5061/dryad.66ft5.2 (Arnold and Houck 2016).

Quantitative Tests of the Phenotypic Tango Model Predic-
tions. Published data on bird of paradise morphology in
combination with a published time‐calibrated phylogeny
were used to gauge the rate and extent of ornament diversi-
fication. In this section and the next, we focus on morpho-
logical ornaments because data on preference are seldom
available for sexual radiations (but see Grace and Shaw
2011). Data on wing, tail, and tarsus length of plumed males
and females in 14 populations representing all seven species
in the genus Paradisaea were obtained from Lecroy (1981;
data file deposited in the Dryad Digital Repository: http://
dx.doi.org/10.5061/dryad.66ft5.2 [Arnold and Houck 2016]).
Population means for each sex‐population combination were
standardized by dividing the raw means (mm) by within‐
sex‐population standard deviations. Standard errors for each
mean were computed from the data provided by Lecroy (1981)
and used in the OUwie analysis. The timescale for ornament
diversification was estimated from a time‐calibrated phylog-
eny of the family Paradisaedae (15 genera) based on mito-
chondrial and nuclear gene sequences (Irestedt et al. 2009).
Quantitative Tests Using the Program OUwie. We used
OUwie (Beaulieu et al. 2012) to compare fits of OU and
BM processes to the Paradisaea data and to estimate FLP
parameters (data and tree files are available at the Dryad
DigitalRepository:http://dx.doi.org/10.5061/dryad.66ft5.2 [Ar-
nold and Houck 2016]). The OUwie program uses a gen-
eralization of Hansen’s (1997) model for a quantitative traits
evolving by an OU process as well as the standard model for
evolution by BM (Beaulieu et al. 2012). The program allows
the user to specify two or more selection regimes on a phy-
logeny and estimates separate process parameters corre-
sponding to those regimes. As a quantitative trait evolves
by OU along a branch of a phylogeny, the change in its mean
at generation t in the kth selection regime is given by the fol-
lowing stochastic differential equation:

d�zk(t) p a[vk 2 �zk]dt 1 j dBMk(t), ð2Þ

where vk is the trait optimum in the kth selection regime and
the last term on the right represents a contribution from a
Table 1: Values of parameters used in simulations
Description
 Symbol
 Values
Phenotypic variance within the sexes
 Pii, Qii
 1

Genetic variance within the sexes
 Gii, Hii
 .04, .4

Genetic covariance between the sexes
 Bii
 0, .24, .36

Natural selection optima
 vzi, vyi
 0, .2, .3, .5, .75

Natural selection width, ornament
 qzii
 4, 9, 19, 29, 49, 99, 999

Correlational natural selection, ornament
 qzij
 0, 3.5, 7.5

Natural selection width, preference
 qyii
 4, 9, 19, 29, 49, 99, 199, 299, 499, 999, 9,999, 99,999

Correlational natural selection, preference
 qyij
 0, 7.5, 25

Strength of female mate choice
 nii
 .08, .4, .8, 5, 10, 20, 40

Correlational female mate choice
 nij
 0, .3

Effective population size
 Ne
 500, 1,000, 5,000

Variance of preference natural selection optimum
 j2

v
 .000055

http://phenotypicevolution.com/?p=221
http://dx.doi.org/10.5061/dryad.66ft5.2
http://dx.doi.org/10.5061/dryad.66ft5.2
http://dx.doi.org/10.5061/dryad.66ft5.2
http://dx.doi.org/10.5061/dryad.66ft5.2
http://dx.doi.org/10.5061/dryad.66ft5.2
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BMprocess, equal to a draw from a normal distribution with
a mean of 0 and variance of j2 (Beaulieu et al. 2012). Each
generation, a restoring force a p Gii=(qzii 1 Pii), where Gii

is additive genetic variance for the trait, pulls the trait mean
toward the optimum (Lande 1976b).

As the restraining force a approaches 0, expression (2)
describes BM:

d�zk(t) p j dBMk(t): ð3Þ

Two biological interpretations for the BM process have been
described (Felsenstein 1985). Under one interpretation, the
BM process is genetic drift of the trait mean, in which case
j2 p Gii=N e, such that the distribution of replicate lineage
means is normally distributed with a mean of 0 (or the an-
cestral mean) and a variance of tGii=N e at generation t
(Lande 1979). The other interpretation is that the BM pro-
cess is the motion of the trait mean as it tracks an optimum
that undergoes BM, in which case the limiting distribution
of replicate lineage trait means will be normally distributed
with a mean of 0 (or the ancestral mean) and a variance that
converges on

j2
v 1 Gii=N e

2a
1 tj2

v ≈ tj2
v , ð4Þ
where j2
v is the per generation variance in the position of

the optimum, a is the restoring force given above, and t is
the number of elapsed generations (app. A; Hansen et al.
2008). In summary, expression (3) describes a BM process,
with a parameter j2 that estimates Gii/Ne under the genetic‐
drift‐of‐the‐mean interpretation or estimates j2

v under the
Brownian‐motion‐of‐the‐optimum interpretation.
Standard errors of the OUwie parameters a and j2 were

estimated by bootstrapping (1,000 replicates) using func-
tion owie.boot. That procedure included drawing samples
from the sampling distribution of the trait (using standard
errors of the mean provided for each of 14 populations) as
well as over hypothetical phylogenetic trees. Standard er-
rors of each population trait mean were also included in cal-
culations leading to model comparisons. This inclusion re-
duced calculation bias favoring the OU model with higher
rates in the younger regime, which arises because one re-
gime is nested inside the other. Standard errors of OUwie
parameter vwere estimated from expressions given by Beau-
lieu et al. (2012). UnderOUmodels, v represents the trait op-
timum in one or more selection regimes. Under BMmodels,
v represents the ancestral mean at the root of a clade or the
entire tree.
In simulations of the phenotypic tango model with a

moving natural selection optimum, a draw each genera-
Table 2: Values of parameters used in figure simulations
Figure
 Pop
 Ne
 Gen
 Orn/pref
 qz
 qy
 vz; vy
 n
 G, H
 B
 j2
v

3
 1
 500
 500
 Orn
 4, 0, 0, 4
 NA
 0, 0
 NA
 .4
 NA
 NA

4A
 100
 5,000
 500
 Both
 4, 0, 0, 4
 19, 0, 0, 19
 0, 0; .5, .5
 .4
 .4
 0
 NA

4B
 100
 5,000
 500
 Both
 4, 0, 0, 4
 19, 0, 0, 19
 0, 0; .5, .5
 .4
 .4
 .24
 NA

4C
 100
 5,000
 500
 Both
 19, 0, 0, 19
 4, 0, 0, 4
 0, 0; .5, .5
 .4
 .4
 .24
 NA

4D
 100
 5,000
 500
 Both
 9, 7.5, 7.5, 9
 29, 25, 25, 29
 0, .2; .4, .3
 4, .3
 .4
 .24
 NA

6
 25
 500
 102 K
 Both
 9, 0, 0, 9
 9,999, 0, 0, 9,999
 Same
 .4
 .4
 .24
 NA

7
 25
 5,000
 102 K
 Both
 9, 0, 0, 9
 19, 0, 0, 19
 Same
 .4
 .4
 .24
 5.5 # 1024
B1A
 100
 5,000
 500
 Both
 4, 0, 0, 4
 9, 0, 0, 9
 Same
 .4
 .4
 .24
 NA

B1B
 100
 5,000
 500
 Both
 4, 0, 0, 4
 99, 0, 0, 99
 Same
 .4
 .4
 .24
 NA

B2A
 100
 5,000
 500
 Both
 9, 0, 0, 9
 299, 0, 0, 99
 Same
 .4
 .4
 .24
 NA

B2B
 100
 5,000
 500
 Both
 29, 0, 0, 399
 49, 0, 0, 49
 Same
 .4
 .4
 .24
 NA

B3A
 100
 5,000
 500
 Both
 9, 0, 0, 9
 99, 0, 0, 99
 Same
 .4
 .4
 0
 NA

B3B
 100
 5,000
 500
 Both
 9, 0, 0, 9
 99, 0, 0, 99
 Same
 .4
 .4
 .36
 NA

B4A
 100
 5,000
 500
 Both
 4, 0, 0, 4
 99, 0, 0, 99
 Same
 40
 .4
 .24
 NA

B4B
 100
 5,000
 500
 Both
 4, 0, 0, 4
 99, 0, 0, 99
 Same
 .08
 .4
 .24
 NA

B5A
 25
 500
 102 K
 Both
 9, 0, 0, 9
 9,999, 0, 0, 9,999
 Same
 .4
 .4
 .24
 NA

B5B
 25
 500
 102 K
 Both
 9, 0, 0, 9
 9,999, 0, 0, 9,999
 Same
 .4
 .4
 .24
 NA

B5C
 25
 500
 102 K
 Both
 9, 0, 0, 9
 9,999, 0, 0, 9,999
 Same
 .4
 .4
 .24
 NA

B5D
 25
 500
 102 K
 Both
 9, 0, 0, 9
 9,999, 0, 0, 9,999
 Same
 .4
 .4
 .24
 NA

B5E
 25
 500
 102 K
 Both
 9, 0, 0, 9
 9,999, 0, 0, 9,999
 Same
 .4
 .4
 .24
 NA

B6
 1
 500
 500
 Orn
 4, 0, 0, 4
 NA
 0, 0
 NA
 .4
 NA
 5.5 # 1024
Note: Elements of the 2 # 2 matrices in columns 6 and 7 are presented in the order x11, x12, x21, and x22. One value for n represents the value of the two
diagonal elements; off‐diagonal elements are 0. Two values for n represent the values of elements n11 and n12 in a symmetric 2# 2 matrix. Single values for G, H,
and B represent the diagonal elements of 2 # 2 matrices; off‐diagonal elements are 0. Ornament and preference are abbreviated “orn” and “pref ”; populations
and generations are abbreviated “pop” and “gen.”
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tion from a bivariate normal distribution with a mean of 0
and a variance of j2

v was added to the position of the op-
timum in the preceding generation. This procedure was
used to produce BM of the natural selection optimum.

Tree topology and branch lengths from Irestedt et al.
(2009) were used to define a tree for the genus Paradisaea
with tip taxa corresponding to the 14 taxa in the LeCroy
(1981) data set (fig. 2). The Irestedt et al. (2009) tree (their
fig. 2) provided only six time‐calibrated nodes for the ge-
nus Paradisaea, whereas the tree used in the OUwie anal-
ysis had nine nodes. Three new nodes were created by cre-
ating polytomies for three taxa (minor, apoda, raggiana)
that were represented by two to four populations (subspe-
cies) in LeCroy’s (1981) data, placing those polytomies half-
way between the tips and the closest time‐calibrated node.

To determine whether adaptive peak movement would
improve model fits, we designated two selection regimes
on theParadisaea tree (fig. 2).One regime included the com-
mon ancestor of the genus (dated at 9.4 Ma) and four basal
taxa (rudolphi, guilielmi, rubra, decora). The other regime
included three taxa (minor, apoda, raggiana) and their com-
mon ancestor, dated at 1.4 Ma. In other words, our designa-
tion supposes that one selection regime prevailed at the or-
igin of the genus in themiddleMiocene and continued to the
present time, affecting four species, and that another began
in the middle Quaternary, affecting a monophyletic set of
three species.
Results

Qualitative Predictions from the
Phenotypic Tango Model

In the absence of drift, the equilibrium for the full process
with natural and sexual selection is a single point that is
stable under the sets of parameters used in the simulations
(app. A). At this point equilibrium the preference means
are at their natural selection optima. But if the natural selec-
tion optima differ between the sexes, the ornament means
are pulled away from their natural selection optima by sex-
ual selection so that they equilibrate along a line connecting
the natural selection optima of preferences and ornaments.
Strong sexual selection (small n) pulls the ornament opti-
mum toward the preference optima, and strong natural se-
lection on ornaments (small qzii) pulls the ornament mean
toward the ornament optimum. To follow the following de-
scriptions of stochastic results, the reader should consult the
online animations (http://phenotypicevolution.com/?pp221)
as well as the static figures; otherwise, the language used to
describe the results may be enigmatic. Supplemental figures
are provided in appendix B (available online).
With drift but in the absence of sexual selection, the bi-

variate ornament mean chaotically meanders in the im-
mediate vicinity of its optimum. Bounds on the trajectory
of the mean are well described by the 95% confidence el-
lipse imposed by natural selection (fig. 3). In other words,
diversification of the ornament (or preference) is affected
only by natural selection (qzii or qyii) and drift (via Ne) in
the absence of sexual selection, as expected from expres-
sion (1).
Sexual selection causes both ornaments and preferences

to diversify beyond the limits imposed by natural selection
and drift. The ordinary evolution (i.e., in the absence of sex-
ual selection) of the ornaments and preferences (fig. 4A) lies
within the boundaries described by their natural selection
95% confidence ellipses. If we allow mate choice, both sets
of traits undergo extraordinary evolution, but the orna-
ments especially do, because they experience direct sexual
selection (fig. 4B). When the positions of the ornament
and preference optima differ, as in figure 4B, the ornament
means are pulled toward the preference mean and a stable
cloud of moving means is formed between the two optima.
In contrast, the preference means form a stable cloud of
moving values that are centered over the preference opti-
mum. If the conditions of stabilizing selection in figure 4B
are reversed so that stabilizing selection is weak on the
ornaments but strong on the preferences, extraordinary di-
versification of the ornaments is completely suppressed
(fig. 4C). Indeed, under these conditions the evolution of
the ornaments is hyperconservative, such that trait means
perpetually reside within the stringent limits imposed by
natural selection on the preferences. If the correlational
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Figure 2: Phylogeny of 14 populations of Paradisaea used in the
OUwie analysis, based on the results of Irestedt et al. (2009). The
tip taxa are P. rudolphi, P. guilielmi, P. rubra, P. decora, P. minor
pulchra, P. minor jobiensis, P. minor finschi, P. minor minor, P. apoda
novaeguinaea, P. apoda apoda, P. raggiana augustaevictoriae, P. rag-
giana intermedia, P. raggiana salvadorii, and P. raggiana raggiana.
The estimated ages of nodes are (from left to right) 9.4, 6.0, 4.0, 2.8,
1.4, 0.7, 0.7, 0.35, and 0.35 Ma. Two hypothetical selective regimes
are denoted with node colors (black and red).

http://phenotypicevolution.com/?p=221


724 The American Naturalist
natural selection acts on both ornaments and preferences,
then the ornaments and preferences have equilibrium dance
floors that are inclined ellipses (fig. 4D). Consequently, in the
discussions that follow we shall be concerned with the situa-
tion in which preferences experience weaker natural selection
than the ornaments (qyii ≫ qzii), that is, the natural selection
ellipse for preferences is larger. Under these conditions,
ornament evolution will be extraordinary, and we can ask
which factors promote that exceptional diversification.
We will also focus on the case in which the optima of orna-
ments and preferences coincide so that we can concentrate
on the conditions that affect the size of the sexual radiation
rather than its location.

Mate choice can cause the ornament mean to evolve far
away from its natural selection optimum. Meandering of
the ornament mean outside the limits imposed by natural
selection alone is especially dramatic when natural selec-
tion is weaker on the preferences than on the ornaments
(as is almost certainly the case when the ornaments are
morphological and the preferences are behavioral). Adding
mate choice also produces the phenotypic tango that we an-
ticipated. In particular, sexual selection causes the bivariate
means of ornaments and preferences to move together
(dance) in trait space (fig. B1A; figs. B1–B6 are available
online). As we relax natural selection on the preferences
(i.e., make qyii larger), the dance floor expands, and the
dancing preference pulls the ornament mean farther away
from its natural selection optimum (fig. B1B). Mate choice
also exaggerates the evolution of the preferences away from
their natural selection optimum. At equilibrium, pairs of
preference and ornament means evolve chaotically on dance
floors that are substantially larger than the limits imposed
by natural selection alone.
Asymmetry in natural selection as well as correlational

selection on the preferences affects the shape as well as the
size of the dance floor. For example, by making stabilizing
selection on one preference trait stronger, we change the
shape of the dance floor from circular to oval (fig. B2A).
A comparable asymmetry in functional constraints on the
ornaments has no effect on the shape of the dance floor
(fig. B2B).
In the absence of a genetic correlation between the sexes,

the evolving preference means pull the ornament means
away from their optimum, but preference diversification
falls within limits set by natural selection (fig. B3A). When
genetic covariance is 0 (Bii p 0), the terms describing cor-
related responses vanish (app. A), and preference evolution
is ordinary. In other words, correlated response to selection
mediated by genetic correlation is a necessary ingredient for
extraordinary evolution of the preference mean (fig. B3B).
The size of the radiation as well as its tempo are directly

affected by the strength of mate choice. The strength of
choice is governed by the width of the Gaussian function
that specifies how stringently the female attends to the or-
naments of the male. When that function is wide (large nii),
preferences are forgiving, and a female will mate with males
whose ornaments deviate substantially from her personal
optimum. When mate choice is sufficiently weak (large nii),
preferences remain inside their 95% natural selection ellipse
(fig. B4A). But when the function is narrow (small nii), the fe-
male mates only with males whose ornaments are very close
to her optimum. As the strength of sexual selection is in-
creased (by decreasing the value of nii), ornament‐preference
pairs dance faster and closer together (fig. B4B). In other
words, the dance floor collapses in size as we decrease the
strength of mate choice.
To appreciate the coordinated nature of male and female

trait coevolution, it helps to plot the lineage mean of one
preference (y1) as a function of the lineage mean of the cor-
responding ornament (z1). In such a plot, we see that coevo-
lution proceeds along a line of equilibrium (fig. B5), similar
to the one described by Lande (1981). As in Lande’s (1981)
model, selection drives the bivariate lineage mean toward
this line so that the ornament mean of a lineage in any given
generation is very close to a mirror image of that lineage’s
preference mean. The similarity of the images is astound-
ingly large; the overall correlation between the means of or-
nament 1 (z1) and preference 1 (y1) in the 100,000 genera-
tions of simulation reported in figure B5 (25 replicate
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Figure 3: Evolution of male ornaments is restrained when sexual se-
lection is absent. The two axes are measurements for two ornament
traits, scaled in units of within‐population phenotypic standard devi-
ation (P1/2). The evolution of a single lineage mean is illustrated over
the course of 500 generations in gray. The bivariate mean of the two
traits at generation 500 is shown as a blue dot. The 95% confidence
ellipse for diversification by natural selection is shown in blue. A black
line connects the bivariate mean to the natural selection optimum.
Past positions of the mean are shown as gray dots. Other parameter
values: Ne p 500; qz p 4, 0, 0, 4; Pii p 1; Gii p 0:4.
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lineages) was 0.99992. In other words, on average the evolv-
ing preferences accounted for 99.98% of the variance in co-
evolving ornaments. This observation that ornament evolu-
tion mirrors preference will be important to us when we
turn to actual data on birds of paradise because the impli-
cation of figure B5 is that we can accurately deduce prefer-
ence evolution from observed ornament evolution or vice
versa.
Explaining Birds of Paradise with the
Phenotypic Tango Model

To view the sexual radiation of birds of paradise through
the lens of the phenotypic tango model, we will restrict our
attention to 14 populations representing seven species in
the genus Paradisaea. This restriction is necessary because
only for this genus do we have data on epigamic traits mea-
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Figure 4: Sexual selection exaggerates the evolution of ornaments and mating preferences, producing a phenotypic tango (illustrated with
sets of 100 lineages at generation 500; Ne p 5,000; Pii p Qii p 1; Gii p Hii p 0:4; Bii p 0:24; nii p 0:4; nij p 0). The 95% confidence el-
lipses for diversification of ornaments and preferences by natural selection alone are shown as heavy blue and red ellipses, respectively.
The 95% confidence ellipses for the sample of ornament and preference means are shown as light blue and red ellipses, respectively. A, Evo-
lution of ornaments and preferences in the absence of sexual selection (qz p 4, 0, 0, 4; qy p 19, 0, 0, 19; vz p 0, 0; vy p 0:5, 0:5; Bii p 0). B,
The evolution of ornaments and preferences in the presence of sexual selection is a tango (qz p 4, 0, 0, 4; qy p 19, 0, 0, 19; vz p 0, 0; vy p
0:5, 0:5; Bii p 0:24). The positions of ornament and preference means for a particular lineage are shown as blue and red dots, respectively,
connected by a black line. C, When stabilizing selection on ornaments and preferences is reversed (weak on ornaments, strong on preferences),
extraordinary evolution of ornaments is eliminated (qz p 19, 0, 0, 19; qy p 4, 0, 0, 4; vz p 0, 0; vy p 0:5, 0:5; Bii p 0:24). D, Correlational nat-
ural selection on ornament and preference changes their 95% confidence ellipses from circles to inclined ellipses (qz p 9, 7:5, 7:5, 9; qy p
29, 25, 25, 29; vz p 0, 0:2; vy p 0:4, 0:3; Bii p 0:24; n11 p n22 p 0:4; n12 p n21 p 0:3).



726 The American Naturalist
sured in both males and females and in multiple species
(LeCroy 1981). How extensive is the evolution of display
traits in this genus?

A summary of relevant data (data file available in theDryad
Digital Repository: http://dx.doi.org/10.5061/dryad.66ft5.2
[Arnold and Houck 2016]) reveals that for two male traits
that figure prominently in male courtship displays, wing
and tail lengths, the 95% confidence limits for the width
of the radiation are510.7 and 12.4 within‐population phe-
notypic standard deviations (P1/2; fig. 5). For females, the
wing and tail values are54.9 and 2.0P1/2. The females’ values
are inside the limits normally seen for divergence of size‐
related traits on a timescale of 9 million years, the estimated
age of the genus (Estes and Arnold 2007; Irestedt et al.
2009; Arnold 2014). Likewise, the radiation widths for tar-
sus length (a trait only marginally involved in displays) in
males and female are55.2 and 0.8P1/2, respectively. In other
words, we can conclude that the evolution of male display
characters is indeed extraordinary in extent, whereas the
evolution of homologous traits in females and nondisplay
traits in both sexes is not extraordinary. Notice that our focus
is on the extent of evolution, not its rate, a point to which we
will return in “Discussion.”

We can appreciate both the pattern and the extent of dis-
play trait evolution in figure 5 by comparing it to one of our
simulation scenarios (fig. 4D). Trait evolution appears to
be positively correlated in both sexes (fig. 5), but the bivar-
iate wing mean of males is about 10P1/2 greater than that of
females, and the bivariate tail mean of males is about 5P1/2

greater than that of females. The pattern evident in fig-
ure 5 is similar to the pattern we see in figure 4D, in which
we plotted the 95% confidence limits for evolution by nat-
ural selection acting on two male ornaments (blue) and on
corresponding preferences (red). Under the phenotypic
tango model (see Lande and Arnold 1985), we expect the
blue ellipse in figure 4D to be closely similar to the ellipse
for homologous female traits under natural selection (i.e.,
similar to the blue ellipse in fig. 5). Likewise, as we argued
at the end of the preceding section, we expect the male or-
nament ellipse in figure 5 to mirror the female preference
ellipse for these lineages. But how can we account for the
positive inclination of the ellipses in figure 5? To produce
those inclinations, we must assume that positive correla-
tional selection acts on both ornaments and preferences
(q12 1 0). Making those assumptions, the phenotypic tango
model can produce a pattern of trait radiation (fig. 4D) very
much like the one observed in birds of paradise (fig. 5).
Can the model also produce the quantitative aspects of the
pattern?
A challenge in testing the phenotypic tango model with

the Paradisaea data is that we need to account for an or-
nament radiation width of approximately 510–12P1/2 over
a period of 9 million years or, using an estimated genera-
tion time of 5 years, 1.8 million generations. Exploring the
model with computer simulations revealed two conditions
that could produce such an extensive radiation on a relatively
short timescale: either very weak stabilizing selection on
preferences or modest movement per generation of the nat-
ural selection optimum for preferences. Figure 6 shows an
example of a radiation comparable to wing length in birds
of paradise produced by specifying very weak selection on
preferences. In this example, we see divergence greater than
510–12P1/2 in about 20,000 generations.We also see that the
limits of extraordinary divergence in ornaments produced
by sexual selection can be approximated by doubling the
99% confidence limits expected when preference evolves un-
der natural selection alone (see the red dotted lines in fig. 6).
This figure also illustrates the faithful mirroring of prefer-
ence evolution by ornaments, especially visible when the
preference mean is far from its optimum.
The production of a radiation comparable to birds of

paradise by letting the preference optimum move by BM
is shown in figure 7. In this example, stabilizing selection
on both preferences and ornaments is relatively strong, yet
the radiation achieves the requisite extent in about 30,000–
40,000 generations. The rate of movement of the preference
optimum that produces this result ismodest (j2

v p 0:00055),
but the consequences are astounding on a timescale greater
than 100,000 generations (see the orange lines in fig. 7).
To appreciate the amount of movement produced each gen-
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Figure 5: Tail length as a function of wing length in 14 populations of
birds of paradise, representing seven species in the genus Paradisaea.
Measurements are expressed in units of average within‐population
standard deviation (P1/2). Females and males are indicated by red and
blue dots, respectively; 95% confidence ellipses and principal axes are
shown for each sex.

http://dx.doi.org/10.5061/dryad.66ft5.2
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eration by this value of j2
v , see figure B6, which portrays a

simulation with the same parameter values as figure 3 but
with the optimum moving.
Testing Alternative Models of Process with
the Birds of Paradise Data

In the preceding section, we determined that we could ex-
plain the Paradisaea data with the phenotypic tangomodel,
and we roughly bracketed the parameter conditions that
would be required for that explanation. In this section, we
use the OUwie model evaluation framework (Beaulieu
et al. 2012) to compare generic versions of OU and BM pro-
cesses and to estimate key parameters of the FLP (e.g., effec-
tive population size, stabilizing selection on preferences,
rate of movement of the preference optimum). A key fea-
ture of OUwie is that selection regimes can be designated
so that parameters of both OU and BM processes change
at predetermined points on a phylogeny. In particular, we
will use OUwie to determine whether peak movement in
an OU model gives a better fit to the data than a stationary
optimum. We will also use OUwie to determine which ver-
sion of BM best describes the data, genetic drift of the orna-
mentmean or BM of the preference optimum and, hence, of
the ornament mean.
Parameter estimates obtained by fitting simple OU and

BM models to the wing length data for Paradisaea males
using package OUwie are shown in table 3. Analysis of tail
and tarsus lengths in both sexes gave similar results and are
not reported. The best‐fittingmodel was BMS, which allows
for different diversification rates in the two regimes but fits
a single value to the trait means at the root of each regime.
BMS is substantially better than BM1, which attempts to fit
a single diversification rate across both regimes. OUM,
which allows different optima in the two regimes but fits
the same diversification rate and optimum in both, is some-
what worse than BMS but substantially better than other
OU models that are either simpler (OU1) or more complex
(OUMV). In other words, the best fitting models are rela-
tively simple versions of BM or OU.
Table 4 shows the FLP parameter estimates derived from

the parameters estimated by OUwie. For example, fitting the
best‐fitting OUmodel with a single selection regime (OUM)
yields an estimate of the restoring force that pulls the wing
length mean back toward its natural selection optimum of
a p 12:49. This restoring force is equivalent to Giit=(qzii 1
Pii), which we can use to estimate the stabilizing selection
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Figure 7: Simulated evolution of ornaments and preferences with a
moving preference optimum (illustrated with a set of 25 lineages;
Ne p 500; Pii p Qii p 1; Gii p Hii p 0:4; Bii p 0:24; nii p 0:4;
nij p 0; qz p 9, 0, 0, 9; qy p 9,999, 0, 0, 9,999; j2

v p 0:00055). Con-
ventions are as in figure 6. The 95% confidence limits for ornament
diversification by natural selection alone are not visible. The orange
curve shows the 95% confidence limits for diversification of prefer-
ence means evolving under a model in which the preference optimum
moves by Brownian motion.
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Figure 6: Simulated ornament and preference lineage means evolv-
ing for 100,000 generations, showing that ornament diversification is
predicted by two times the natural selection confidence limits for
preferences (illustrated with 25 lineages; N e p 500; Pii p Qii p 1;
Gii p Hii p 0:4; Bii p 0:24; Bij p 0; nii p 0:4; nij p 0; qz p 9, 0,
0, 9; qy p 9,999, 0, 0, 9,999; at generation 100,000, these are the same
data as in figure B5). Ornament (blue) and preference (red) means
are shown in units of within‐population standard deviation, P1=2 p
Q1=2. Black curves show the expected 99% confidence limits for orna-
ment diversification by natural selection alone. Bold red lines show
the expected 99% confidence limits for preference diversification by
natural selection alone. Dotted red lines show two times the 99% con-
fidence limits for preferences.
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parameter qzii by setting Gii p 0:4, a modal value for mor-
phological traits (Estes and Arnold 2007), and realizing that
t p 200,000 generations. We find that qzii is approximately
6,404 (table 2). Although this estimate of stabilizing selec-
tion is based on ornament data, recall from our simulations
of the FLP that ornament evolution is governed by natural
selection on preferences and, indeed, that ornament diver-
sification mirrors preference diversification (fig. 6). These
considerations suggest that 6,404 might be taken as a rough
approximation of the magnitude of stabilizing selection act-
ing on preferences (qyii). By this logic, the other OU models
yield estimates of qyii that are either stronger (3,242) or
weaker (25,477).

From figure 6, we can derive a useful approximation from
the fact that the 95% confidence limits for ornament diver-
sification (red dotted lines) are approximated by two times
the 99% confidence limits for diversification in preference
by natural selection alone (red solid line). Let Vy be the em-
pirically observed variance in preference means under a FLP
model that includes natural and sexual selection. Then our
statement about equivalence of confidence limits becomes

1:96
ffiffiffiffiffiffi
Vy

p ≈ 2(2:576)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qyii 1 Q

N e

r
, ð5aÞ

where the expression in the square root sign on the right is
the limiting value for variance in preference means under
natural selection alone (1). Fitting OU models with OUwie
provides an estimate of the diversification rate j2, which is
equivalent to variance in ornament means and hence to
Vy. Rearranging the above expression and solving for stabi-
lizing selection on preferences, we have

qyii ≈ N ej
2

1:341
2 1: ð5bÞ
Using this expression to estimate the magnitude of stabi-
lizing selection with values of Ne ranging from 5,000 to
50,000 and estimates of j2 from OUwie models OUM,
OU1, and OUMV, we obtain the values of qzii and, hence,
qyii ranging from 105 to 107 (table 2). In other words, the
restoring force of natural selection on preferences is appar-
ently extremely weak, regardless of which model is used to
estimate it.
Under the genetic drift interpretation of BM, the esti-

mated diversification rate j2 is equivalent to Giit/Ne. Using
the values forGii and t shown in table 4, we obtain estimates
of effective population size of 25,157 in regime 1 and 722 in
regime 2 using the BMS model. To put these numbers in
perspective, in a sample of eight noncolonial bird species,
Ne estimates ranged from 176 to 7,678, with an average of
1,993 (Barrowclough 1980). Clearly, BMS is struggling to
account for the modest, slower differentiation in regime 1
with a value for Ne that seems unrealistically large and for
the more substantial, faster differentiation in regime 2 with
an unrealistically small Ne. Likewise, BM1, which fits a sin-
gle value of j2, estimates Ne as 1,105, which seems plausible
on the basis of Barrowclough’s (1980) survey but is proba-
bly unrealistically small on a 105‐generation timescale. We
conclude from this exercise that we can reject the genetic
drift interpretation of BM because the estimated values of
Ne are unrealistic.
Under the adaptive peak movement interpretation of

BM, we can estimate the per generation rate of peak move-
ment. OUwie diversification rate j2 is equivalent to tj2

v ,
providing three estimates of j2

v (table 4). Using the fastest
of these rates (j2

v p 0:00055, for regime 2 using BMS) for
the movement of natural selection optimum for preference,
we can easily account for a birds of paradise–comparable ra-
diation in wing length in as few as 20,000 generations (fig. 7).
Table 3: Ornstein‐Uhlenbeck (OU) and Brownian motion (BM) model results for diversification in male Paradisaea wing lengths
obtained using the package OUwie
Model
BMS
 OUM
 OU1
 OUMV
 BM1
DAICc
 .0000
 1.1127
 3.8031
 4.2589
 6.0834

Regime 1:
j2, diversification rate
 3.18 5 .08
 443.51 5 53.24
 165.39 5 70.80
 420.21 5 31.13
 72.42 5 4.46

a, restoring force
 NA
 12.49 5 .21
 3.14 5 .25
 24.67 5 .71
 NA

v, optimum (OU) or ancestral

mean (BM)
 51.45 5 1.52
 52.60 5 1.74
 55.13 5 1.92
 52.92 5 .98
 52.24 5 7.14

Regime 2:
j2, diversification rate
 110.81 5 6.43
 443.51 5 53.24
 165.39 5 70.80
 1,796.62 5 5,531.86
 72.42 5 4.46

a, restoring force
 NA
 12.49 5 .21
 3.14 5 .25
 24.67 5 .71
 NA

v, optimum (OU) or ancestral

mean (BM)
 51.45 5 1.52
 59.29 5 1.19
 55.13 5 1.92
 59.17 5 1.20
 52.24 5 7.14
Note: Change in Akaike information criterion corrected for sample size (DAICc), relative to model BMS, is shown in the first row. Calculation of standard
errors, provided after each plus‐or‐minus sign, is described in the text.
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That result suggests that peak movement is a more plausible
model of BM than genetic drift.
Discussion

Qualitative Insights from the Phenotypic Tango Model

Our focus on the factors that determine the size and shape
of sexual radiations fundamentally reorders long‐standing
perspectives on the FLP. Focusing first on drift‐selection
balance results, we find that natural selection on prefer-
ences controls the sexual radiation in ornaments. In par-
ticular, the strength and pattern of stabilizing selection on
preferences defines the evolutionary trait space (dance
floor) within which ornaments achieve a stable balance be-
tween drift and selection. Second, effective population size
is the other major factor defining the dance floor. In con-
trast, natural selection on ornaments has relatively little ef-
fect on the diversification of ornaments because even with a
modest strength of mate choice (moderately small n), evolv-
ing preferences pull ornaments into a stable equilibrium
cloud that extends far from their optimum. Inheritance
plays an even smaller role in defining the boundaries of or-
nament diversification in the sense that a genetic correla-
tion between the sexes can amplify the diversification of
both preferences and ornaments, but the amplification may
not be large. Alternatively, if we try to account for sexual
radiations with moving preference optimum, we find that
the rate at which that optimum moves completely domi-
nates the extent of the sexual radiation, overshadowing the
effects of all other parameters.
Stepping back from the specifics of our analysis, one as-

pect of the overview is surprising. With the addition of se-
lection on preferences, Lande’s (1981) model becomes an
OU model in which diversification is bounded instead of
perpetually expanding by drift (Uyeda et al. 2009), but be-
Table 4: Estimates of Fisher‐Lande process parameters from OUwie parameter estimates
Regime
 Gii
 Pii
 t
 a
 qzii
OU models:

Estimates of stabilizing selection from

OUwie parameter a:

OUM
 NA
 .4
 1
 200,000
 12.49
 6,404

OU1
 NA
 .4
 1
 200,000
 3.14
 25,477

OUMV
 NA
 .4
 1
 200,000
 24.67
 3,242
Regime
 Ne
 Pii
 j2
 qzii
Estimates of stabilizing selection from
OUwie parameter j2:
OUM
 NA
 5,000
 1
 443.51
 . . .
 1,653,653

OUM
 NA
 50,000
 1
 443.51
 . . .
 16,536,539

OU1
 NA
 5,000
 1
 165.39
 . . .
 616,666

OU1
 NA
 50,000
 1
 165.39
 . . .
 6,166,666

OUMV
 1
 5,000
 1
 420.21
 . . .
 1,566,778

OUMV
 1
 50,000
 1
 420.21
 . . .
 15,667,784

OUMV
 2
 5,000
 1
 1,796.62
 . . .
 6,698,806

OUMV
 2
 50,000
 1
 1,796.62
 . . .
 66,988,068
Regime
 Gii
 t
 j2
 Ne
BM models:

Estimates of effective population size from

OUwie parameter j2:

BMS
 1
 .4
 200,000
 3.18
 . . .
 25,157

BMS
 2
 .4
 200,000
 110.81
 . . .
 722

BM1
 NA
 .4
 200,000
 72.42
 . . .
 1,105
Regime
 t
 j2
 j2
v

Estimates of the rate of peak movement
from OUwie parameter j2:
BMS
 1
 . . .
 200,000
 3.18
 . . .
 .0000159

BMS
 2
 . . .
 200,000
 110.81
 . . .
 .0005541

BM1
 NA
 . . .
 200,000
 72.41
 . . .
 .0003621
Note: BM p Brownian motion; OU p Ornstein‐Uhlenbeck.
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cause evolution is bounded the crucial features of the model
are parameters that define boundaries rather than those
that define evolutionary rates. This contrast is vividly illu-
minated by the bird of paradise case study because we find
that we have plenty of time for the radiation to emerge. The
big puzzle is how the radiation is shaped and constrained.
Those are issues not of rate but of constraint.
Quantitative Insights from the Phenotypic Tango Model

We found that we must invoke either extremely weak nat-
ural selection on preferences or allow the preference opti-
mum to move to account for the quantitative aspects of
ornament diversification in birds of paradise. We reached
this conclusion by placing particular parameters within re-
alistic bounds (e.g., heritability, genetic correlation, Ne,
and selection on ornaments) and asking what values of
other key parameters were required to account for the
radiation of ornaments. In the case of a stationary prefer-
ence optimum, we found that stabilizing selection on pref-
erences needs to be four orders of magnitude weaker than
stabilizing selection on ornaments and that effective pop-
ulation size must be relatively small (N e p 500; fig. 6).
We can determine what other parameter combinations will
give equivalent results by noting that the limiting width
of the ornament radiation will be proportional to (qyii 1
1)=2N e (see expression [1]). In figure 6, this expected var-
iance was 104=103 p 10, so we can anticipate radiations of
comparable size when qyii 1 1 is 105 and Ne is 50,000 (or
qyii 1 1 p 106 and N e p 500,000). In any of these cases,
we are invoking stabilizing selection much weaker than that
which can be measured in nature. One might be tempted
to conclude that such selection is so weak that we might
as well conclude that preferences are selectively neutral.
This argument overlooks the important effect that even ex-
tremely weak stabilizing selection can have on a timescale of
a million generations or more. On such a long timescale, the
weak selection that we invoke puts stable limits on diversi-
fication that stop ornaments from evolving to truly absurd
sizes.

Alternatively, we can account for ornament radiations
comparable to Paradisaea with a FLP in which the prefer-
ence optimum moves by BM. The rate of random motion
that we used in figure 7 was about 2% of a within‐population
phenotypic standard deviation in preference each gener-
ation, which seems remarkably modest given the magni-
tude of radiation in ornaments that it can produce in a few
tens of thousands of generations. The other remarkable fea-
ture of this model is that the long‐term magnitude of the ra-
diation is a function of elapsed time and the rate of peak
movement and not a function of other parameters of selec-
tion or inheritance.
Quantitative Insights from the Generic
OU and BM Models

The major conclusion emerging from our analysis using
OUwie is that a modest rate of peak movement could ac-
count for the ornament diversification that we observe in
one bird of paradise genus. If we imagine that the natural
selection optimum for preferences moves randomly at a
rate in the range of only 0.4%–2% of a phenotypic stan-
dard deviation per generation, we obtain our best fits to
data on ornament diversification. In contrast, other inter-
pretations of the best‐fitting generic models are much less
palatable. For example, if we use the genetic drift interpre-
tation of the best‐fitting BM model (BMS), we must imag-
ine that Ne changes from about 25,000 in one section of the
phylogeny to about 700 in another section. Alternatively,
if we chose one of the best‐fitting OU models, we must
invoke the same extraordinarily weak selection on prefer-
ences that gave us pause using the phenotypic tango model
(i.e., qyii 1 1 p 105 to 107). These considerations lead to
the conclusion that peak movement (by BM or some other
process) is the key to understanding extraordinary evolu-
tion of preferences and, hence, of ornaments. The point
that peak movement will probably be a necessary ingredi-
ent for successful modeling of adaptive radiations has been
made in a broader context (Arnold et al. 2002; Estes and
Arnold 2007; Hansen et al. 2008; Uyeda et al. 2011; Beau-
lieu et al. 2012). In general, successful models need to bal-
ance factors promoting stasis (e.g., stabilizing selection) with
factors that promote diversification (e.g., drift, peak move-
ment). This need for pairing suggests that if we try to explain
sexual radiations using more complicated models of prefer-
ence evolution (e.g., including handicaps, indicator traits, or
sexual conflict), we will need to compensate for the con-
straints that those elaborations impose with diversification
amplifiers such as peak movement.
Birds of Paradise and Beyond

Despite success in finding an explanation for some aspects
of the plumage radiation in one genus of birds of paradise,
we have not attempted to explain other aspects of that and
other sexual radiations. For example, sexual radiations are
often characterized by bursts of unusual ornament evolu-
tion that are restricted to one or a few lineages in a clade.
The elongate white wrist plumes unique to the standard-
wing bird of paradise (Semioptera wallacii) or the unusual
head plumes of the king of Saxony bird of paradise (Pte-
ridophora alberti) are examples. Although the versions of
the FLP that we have explored do little to illuminate the or-
igin of these kinds of novelties, we might be able to account
for them with a modest extension of the moving optimum
feature. One could define thresholds on the trait scales such
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that the trait (ornament or preference) is expressed once
trait mean evolves beyond the threshold (Wright 1934;
Felsenstein 2012). Expression could mean that the orna-
ment becomes detectable by the sensory systems of the fe-
male or that the preference now plays a role in mate choice.
By this modeling device one might account for the rapid
origin of new ornaments or for the loss of old ones. The
broader point is that the multivariate version of the FLP de-
scribed here could be extended to explain many otherwise
enigmatic features of sexual radiation.

The methods that we have used to resolve evolutionary
process and estimate its parameters in birds of paradise
could be easily applied to other sexual radiations. The es-
sential ingredients are measurements of sexually selected
traits in multiple taxa with a time‐calibrated phylogeny. Al-
though we used a data set with only 14 taxa, simulations by
Beaulieu et al. (2012) indicate that dozens or scores of taxa
will often be needed to get accurate parameter estimates
with OUwie. Aside from advocating the use of larger data
sets thatweemployedhere,wealso recommendmakingcon-
tinuous measurements of traits rather than using a small
number of trait categories. Continuous traits give access to
the most powerful models of evolutionary process.
Conclusions

The confrontation that we have described between data
and theory reveals both empirical and theoretical issues.
On the empirical side, we see a general need for more
quantitative data that describe both the scope and the time
course of evolution driven by sexual selection. In the case
of birds of paradise, we need data from more species and
populations, with measurements focused on the acoustic
and behavioral as well as the morphological components
of male display. On the theoretical side, the growing abil-
ity to test alternative models with tree‐based data is cer-
tainly an important path forward (Arnold 2014). But for
all their strengths, the available models and testing frame-
works suffer from some conspicuous limitations. In the
bird of paradise test case, we showed that a model of peak
movement by BM provided the best fit to our data, and we
were able to estimate the parameter of peak movement
by maximum likelihood. This success, however, leaves us
stranded short of illuminating the details of bird of para-
dise population and behavioral biology. In this article, we
bridged that gap using the phenotypic tango model of the
FLP and gained additional perspective on the processes
driving the bird of paradise radiation. One promising av-
enue forward will be to use testing frameworks that incor-
porate quantitative prior information about selection, in-
heritance, and population size. Such a framework has been
described and implemented by Uyeda and Harmon (2014).
Beyond those improvements, we also need to embed the
FLP in a testing framework that addresses the essential com-
plexities of sexual radiation. In particular, these radiations
ramify in multivariate phenotypic space. Consequently, we
need to test quantitative genetic FLP models that reflect
the reality that female choice is based on multiple, inter-
acting male traits that broadcast in multiple sensory modal-
ities (Heisler 1985; Pomiankowksi and Iwasa 1993; Iwasa
and Pomiankowski 1994). An additional goal should be to
see if lessons emerging from population genetic modeling
of the FLP (van Doorn and Weissing 2004, 2006) will hold
in quantitative genetic models and help explain sexual
radiations. In general, we need to test multivariate models
that capture the essence of sexual communication. The phe-
notypic tango model is a step in this direction, but only a step.
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APPENDIX A

Details of the Phenotypic Tango Model

The following results are derived from results in Lande
(1981) unless noted otherwise. The model is presented for
multiple ornaments and preferences but is illustrated for
just the bivariate case (matrices and vectors are denoted
with boldface). The phenotypic values of two male orna-
ment traits z p (z1, z2)

T, where T denotes transpose, and
two female preference traits y p (y1, y2)

T are each affected
by multiple genes and environmental effects. The pheno-
typic values of the four traits are multivariate normally dis-
tributed and genetically uncorrelated within a sex before se-
lection with means denoted by column vectors, �z and �y, and
with variance‐covariance matrices, which are 2 # 2 in the
bivariate case, denoted by P and Q, respectively. The corre-
sponding inheritance matrices for the traits are the 2 # 2
symmetric matrices G and H, with additive genetic vari-
ances on their diagonals and additive genetic covariances
elsewhere. A third 2# 2 symmetric matrix, B, describes ge-
netic covariances between the sexes.

The deterministic responses of the trait means to selec-
tion from one generation to the next are a function of addi-
tive genetic variance/covariance and the selection gradients
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D�z
D�y

� �
p

D�z1
D�z2
D�y1
D�y2

2
664

3
775 p ½

G B
B H

� �
bz

by

� �
, ðA1Þ

where the factor of ½ accounts for sex‐limited trait expres-
sion and bz and by are, respectively, the selection gradients
for ornaments and preferences (see Lande 1980b, 1981).
The additive genetic variance/covariance matrix for the trait
vector (z, y)T takes the following form:

½
G B
B H

� �
p ½

G11 G12

G12 G22

B11 B12

B12 B22

B11 B12

B12 B22

H11 H12

H12 H22

2
64

3
75: ðA2Þ

Stabilizing natural selection acts on the ornaments. The in-
dividual selection function describing this selection isGauss-
ian in shape with an optimum at vz p (vz1, vz2)

T and width
parameters

qz p
qz11 qz12

qz12 qz22

� �
,

with elements analogous to variances and covariances. In
other words, the expected fitness of an individual male with
trait values z1 and z2 is

W(z) p expf2½(z 2 vz)
Tq21

z (z 2 vz)g ðA3Þ
(Lande 1979, 1980b). This natural selection shifts the mean
of the trait from �z p (�z1,�z2)

T to �z* p (�z*1,�z*2)
T, so that after

natural selection the ornaments are multivariate normally
distributed with mean and variance‐covariance given by

�z* p (qz 1 P)21(qz�z 1 Pvz), ðA4aÞ

P* p (q21
z 1 P21)21 p P2 P(qz 1 P)21P ðA4bÞ

(Lande 1980a). Consequently, the shifts in the means of the
ornaments—their natural selection differentials—are

szns p �z* 2 �z p
�z*1 2 �z1
�z*2 2 �z2

� �
p (qz 1 P)21P(vz 2 �z):

ðA5Þ
Analogous natural selection acts on the female preference
traits. As with the ornaments, we assume that directional
and stabilizing natural selection acts on the preferences. Let-
ting this natural selection be Gaussian in form with an op-
timum at vy p (vy1, vy2)

T and width parameters

qy p
qy11 qy12

qy12 qy22

� �
,

we obtain the following expression for the relative fitness of
a female with preference traits values y:
W(y) p expf2½(y2 vy)
Tq21

y (y2 vy)g: ðA6Þ
The preference means and variances after natural selection
are

�y* p (qy 1Q)21(qy�y1 Qvy), ðA7aÞ

Q* p (qy
21 1Q21)21 p Q2Q(qy 1Q)21Q, ðA7bÞ

giving the selection differentials

Sy p �y* 2 �y p
�y*1 2 �y1
�y*2 2 �y2

� �
p (qy 1Q)21Q(vy 2 �y)

ðA8aÞ
and the selection gradients

by p Q21Sy p (qy 1 Q)21(vy 2 �y) ðA8bÞ
for the preference traits.

Female mate choice exerts sexual selection on the dis-
tributions of ornaments after natural selection, causing ad-
ditional shifts in the ornament means. The tendency of a
particular female with preference value y to mate with a
particular male with ornament value z is proportional to
a multivariate Gaussian function w(zFy) with an optimum
at y and width parameters

n p
n11 n12
n12 n22

� �
,

as follows:

w(zjy) p w(z1jy1)
w(z2jy2)

� �
∝ expf2½(z 2 y)Tn21(z 2 vz)g:

ðA9Þ
Averaging these functions over the ornament trait distribu-
tions after natural selection, we find that the average orna-
ment traits of the males that mate with a female with prefer-
ence value y deviate from her personal optimum by amounts
given by

(n1 P*)21P*(y2 �z*): ðA10Þ
Averaging over the female preference distribution after nat-
ural selection, we find that the average tendency of females
to mate with a male with ornament value z is a Gaussian
function:

w(z) p
w(z1)
w(z2)

� �
∝ expf2½(z 2 �y*)T(Q* 1 n)21(z 2 �y*)g

ðA11Þ
(Arnold et al. 1996, expression [4]). These expressions allow
us to solve for the shift in the ornament means caused by
sexual selection:
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Szss p (n1 P*)21P*(�y*2 �z*) p (n1 P*)21P* �y*
1 2 �z*1
�y*
2 2 �z*2

� �
:

ðA12Þ
Combining this sexual selection differential with the natural
selection differential, we obtain the total selection differen-
tial and gradients for the ornaments (Lande 1980b):

Sz p Szns 1 Szss, ðA13aÞ

bz p P21Sz p (qz 1 P)21(vz 2 �z)

1 P21(n1 P*)21P*(�y* 2 �z*): ðA13bÞ
We used this exact expression in our simulations. If, follow-
ing Lande (1981), we let preferences and natural selection be
weak so that qz, n ≫ P, the above expression yields his ap-
proximation for the total net selection gradient acting on a
single ornament:

bz p P21Sz ≈ qz
21

�y*

aii

2 11
1
aii

� �
�z 1 vz

�
,

�
ðA14Þ

where

a p
a11 a12

a12 a22

� �
p q21

z n

and aii p a11 p a22.
We can solve for the equilibrium of the deterministic

process by setting our expressions for selection gradients
([A8b] and [A13b]) equal to 0 and solving for the values
of the preference and ornament means. The resulting ex-
pression for equilibrium preference mean is simple,

ŷ p vy, ðA15aÞ
but the expression for the equilibrium ornament mean is
more complicated. Simplifying that expression by assum-
ing that qz, n ≫ P, we obtain an expression for the orna-
ment mean at equilibrium:

ẑ ≈ q21
z (vz 2 �z)1 n21(�y* 2 �z*)

≈ (q21
z 1 n21)21(q21

z 2 n21q21
z P)vz 1 (q21

z 1 n21)21n21vy:

ðA15bÞ
The first expression on the right is not a closed solution be-
cause �z occurs in both of its terms, but it makes the equi-
librium condition transparent by showing how the balance
between natural and sexual selection arises. The final ex-
pression is a closed solution, but it is considerably less trans-
parent. In other words, at equilibrium the preference mean
is at its optimum, but the ornament mean may strongly de-
viate from its natural selection optimum in the direction of
the preference optimum.

Substituting expressions (A8b) and (A13b) for the two
selection gradients into expression (A1), we obtain our
equations for the response of the ornament and preference
means to the combined forces of natural and sexual selec-
tion. In our simulations, the expressions for selection re-
sponse took a simple form because we assumed that traits
were genetically uncorrelated within each sex. Further-
more, to simplify implementation of the model, we gener-
ally assumed that the additive genetic variance/covariance
matrix for the trait vector (z, y)T took the following form:

½
G B
B H

� �
p ½

G11 0

0 G22

B11 0
0 B22

B11 0
0 B22

H11 0
0 H22

2
664

3
775: ðA16Þ

In our simulations, we used the following expression for
the stochastic evolution of ornaments and preferences:

D�z
D�y

� �
p

D�z1
D�z2
D�y1
D�y2

2
664

3
775p ½

G B
B H

� �
bz

by

� �
1 N 0,

1
2N e

G B
B H

� �� �

ðA17Þ
(Lande 1979, 1980b). The first term on the right involves
direct responses to selection as well as correlated responses
to selection such that selection on a preference trait evokes
a response in a genetically correlated ornament trait and vice
versa. The last term on the right specifies changes in trait
means due to genetic drift (Lande 1979). In other words,

N 0,

G B
B H

� �

2N e

2
64

3
75

denotes a draw of a vector of change in four values,
(z1, z2, y1, y2)

T, from a multivariate normal distribution with
a mean vector of zeros and a variance-covariance matrix of

G B
B H

� �

2N e

,

where Ne is effective population size.
In the absence of sexual selection, the genetic correla-

tion between the sexes is not maintained, B11 p B22 p 0,
and the expression for per generation evolution simplifies
further to

D�z
D�y

� �
¼

D�z1
D�z2
D�y1
D�y2

2
664

3
775 p

½G11bz1

½G22bz2

½H11by1

½H22by2

2
664

3
7751

N(0,G11=2N e)
N(0,G22=2N e)
N(0,H11=2N e)
N(0,H22=2N e)

2
64

3
75,

ðA18Þ
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where

bz1

bz2

� �
p

Sz1=P11

Sz2=P22

� �
ðA19aÞ

and

Sz1

Sz2

� �
p

�z*1 2 �z1
�z*2 2 �z2

� �
p

qz11�z1 1 P11vz1

qz11 1 P11

2 �z1

qz22�z2 1 P22vz2
qz22 1 P22

2 �z2

2
664

3
775,

ðA19bÞ

and similarly for the selection differentials and gradients
on preferences. In these expressions, we have also assumed
that there is no genetic covariance within the sexes and
that the off‐diagonal terms in qz and qy are 0.

We can also specify the distribution of trait means in a
set of replicate populations evolving by natural selection
alone. Because all traits evolve independently in the ab-
sence of sexual selection, we can apply Lande’s (1976b) re-
sults for a single trait evolving toward stabilizing selection‐
drift balance in multiple replicate lineages. Setting the trait
optima at 0, after t generations the means of the orna-
ments of the replicate lineages will be multivariate nor-
mally distributed with means of 0 and variance‐covariance
given by

Var[�z(t)]p
qz 1 P
2Ne

f12 exp[22((qz 1 P)21G)t]g:
ðA20Þ

Even when stabilizing natural selection is relatively weak,
the distribution of trait means rapidly reaches a long‐term
equilibrium variance‐covariance given by (qz 1 P)=N e. An
analogous expression holds for the stochastic evolution of
preferences under natural selection alone.

If the natural selection optimum moves by BM, we can
solve expressions that summarize the dynamics of the pro-
cess, but the variance expression is more complicated than
expression (A20) (Hansen et al. 2008). In particular, in the
case of genetically and phenotypically uncorrelated orna-
ments, the distribution of lineage means at generation t is
normal, with a mean given by the common position of the
optimum at generation 0 and with variance given by the fol-
lowing univariate expression:

Var[�z(t)]p
j2
v 1 (G=N e)

2a
f12 exp[22at]g

1 j2
vt 12 2

(12 exp[2at])
at

� �
,

ðA21aÞ

where a p (qz 1 P)21G and j2
v is the variance in the posi-

tion of the optimum, v. This expression rapidly converges to
Var[�z(t)] p tj2
v: ðA21bÞ

In other words, the details of inheritance and selection
(other than the movement of the optimum) have no effect
on the long‐term pattern of the adaptive radiation.
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