On the Measurement of Natural and Sexual Selection: Theory

Stevan J. Arnold; Michael J. Wade

Evolution, Vol. 38, No. 4 (Jul., 1984), 709-719.

Stable URL:
http://links jstor.org/sici?sici=0014-3820%28198407%2938%3 A4%3C709%3A0TMONA%3E2.0.CO%3B2-%23

Evolution is currently published by Society for the Study of Evolution.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ssevol.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Fri Nov 4 23:51:13 2005



EVOLUTION

INTERNATIONAL JOURNAL OF ORGANIC EVOLUTION

PUBLISHED BY
THE SOCIETY FOR THE STUDY OF EVOLUTION

Vol. 38

July, 1984

No. 4

Evolution, 38(4), 1984, pp. 709-719

ON THE MEASUREMENT OF NATURAL AND SEXUAL SELECTION:
THEORY

STEVAN J. ARNOLD AND MICHAEL J. WADE
Department of Biology, University of Chicago, Chicago, Illinois 60637

Received October 27, 1981.

The aim of this paper is to illustrate
an approach to the empirical measure-
ment of selection that is directly related
to formal evolutionary theory. Recent
field studies have demonstrated that it is
feasible to measure fitness in natural pop-
ulations. The most successful studies have
yielded accurate tallies of survivorship,
mating success and fertility (e.g., Tinkle,
1965; Howard, 1979; Downhower and
Brown, 1980; Lennington, 1980; Kluge,
1981; Clutton-Brock et al., 1982). De-
spite this success, no concensus has been
reached on how to analyze the data and
relate them to evolutionary theory. We
present here a mode of data analysis that
describes selection in useful, theoretical
terms, so that field or experimental re-
sults will have a tangible relationship to
equations for evolutionary change.

Multivariate, polygenic theory (Lande,
1979, 1980, 1981; Bulmer, 1980) is par-
ticularly useful as a conceptual frame-
work because it is concerned with the
evolution of continuously distributed
traits such as those commonly studied in
laboratory and field situations. Multi-
variate equations have been used for
many years by plant and animal breeders
in order to impose selection and predict

Revised December 17, 1983

its impact (Smith, 1936; Hazel, 1943;
Dickerson et al., 1954, 1974; Yamada,
1977), but this quantitative genetic the-
ory has only recently been applied to evo-
lutionary problems.

Definitions and Aims.—1It is critical to
distinguish between selection and evolu-
tionary response to selection (Fisher,
1930; Haldane, 1954). Selection causes
observable changes within a generation
in the means, variances and covariances
of phenotypic distributions. Thus selec-
tion can be described in purely pheno-
typic terms without recourse to the in-
heritance of characters. In contrast,
evolutionary response to selection, for
example, the change in phenotypic mean
from one generation to the next, certainly
does depend on inheritance. In the fol-
lowing sections we show how knowledge
of inheritance can be combined with
purely phenotypic measures of selection
to predict evolutionary response to se-
lection. By distinguishing between selec-
tion and response to selection we can
measure selection on characters whose
mode of inheritance may be unknown
and make prediction of evolutionary re-
sponse a separate issue. Thus knowledge
of inheritance is essential for complete
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evolutionary analysis but is not required
for the measurement of selection on phe-
notypic characters.

The statistical relationship between fit-
ness and phenotypic characters can be
deduced from the changes that occur
within a generation in the means, vari-
ances and covariances of phenotypic
traits. The covariance between relative
fitness and a quantitative character is
mathematically equivalent to the shift in
mean induced within a generation by di-
rectional selection (Robertson, 1966;
Price, 1970; Bulmer, 1980). This covari-
ance, or change in mean before and after
selection, is called the selection differ-
ential (Lush, 1945; Falconer, 1981).
However, the mean may shift within a
generation for two reasons: (1) because
selection has acted directly on the char-
acter, or (2) because selection has acted
on a correlated character (Pearson, 1903).
The direct and indirect effects of selection
can be partitioned with multivariate sta-
tistics if the correlated characters that are
actually under selection are included in
the data. The partial regression of relative
fitness on a character measures the direct
force of selection on that character and
is known as the selection gradient (Lande,
1979; Lande and Arnold, 1983).

One of the primary aims of this paper
is to show how selection, measured by
selection differentials or gradients, can be
separated into parts corresponding to
segments of the life cycle. We refer to
these life cycle segments as episodes of
selection. The recognition of separate ep-
isodes of selection is useful because the

direction or magnitude of selection on

particular characters may change from
one life cycle segment to the next. We
present a formal solution that permits
partitioning of selection differentials and
gradients into parts corresponding to an
arbitrary number of selection episodes.
We treat the general case in which selec-
tion acts simultaneously on a whole suite
of characters, but we deal here only with
directional selection. The measurement
of stabilizing and disruptive selection is
discussed in Lande and Arnold (1983).
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The opportunity for selection can be
conveniently measured as the variance in
relative fitness (Crow, 1958). Variance in
fitness constrains the evolution of fitness
itself and the intensity of selection that
can act on any character. When there is
no variance in fitness, there can be no
selection: when there is a large variance
in fitness, there is a great opportunity for
selection. The fact that the opportunity
for selection can be expressed as a vari-
ance is important because we can treat
many apparently unsolved problems in
the analysis of selection as well-studied
problems in the analysis of variance. One
such problem is a primary topic of this
paper: How can we measure the selection
opportunities corresponding to separate
stages in the life cycle? We use a multiple-
level analysis of fitness variance to solve
this problem. The mode of analysis is
illustrated in a companion paper (Arnold
and Wade, 1984) with fitness data from
frog, lizard and insect populations.

Measures of Selection in Relation to
Evolutionary Theory

In order to place our results in a con-
ceptual framework, it will be useful to
review briefly some recent developments
in multivariate selection theory. In na-
ture, selection will usually act simulta-
neously on a whole set of phenotypic
characters. Furthermore, the characters
may be phenotypically and genetically
correlated. Genetic correlation means that
the characters are genetically coupled due
to pleiotropy and/or linkage disequilibri-
um (Falconer, 1981). Under these com-
mon circumstances, one cannot predict
the evolution of a single character by
merely knowing its heritability and the
strength of selection. Thus the usual
equation for response to selection (re-
sponse to selection equals the product of
heritability and selection differential)
cannot be used to model multivariate
evolution in nature (Falconer, 1981).

Evolution in nature can be modeled
using Lande’s (1979, 1982) equation for
response to multivariate selection. In
Lande’s generalization of the standard
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univariate equation, AZ is a column vec-
tor representing the change in the mean
of each phenotypic character from one
generation to the next, G is the additive
genetic variance-covariance matrix for
the characters, P is the phenotypic vari-
ance-covariance matrix assessed before
selection with the matrix inverse P!, S
is a column vector of selection differen-
tials and 8 = P~1S'is a column vector of
selection gradients. The selection differ-
ential measures both direct and indirect
effects of selection, whereas the selection
gradient measures only direct effects. As-
suming that selection acts directly on
phenotypic values, Lande (1979) shows
that the deterministic evolution of phe-
notypic means can be modeled by the
equation

Az =GP 'S = GB. )]
Focusing on the first character in the set,
z,, the change in mean across one gen-
eration is

Az | =GB, + GBsy + G365

+ o + Gln Bm (lb)

where G, is the additive genetic variance
for the first character, G,; is the additive
genetic covariance between the first and
the j™ character and B, is the selection
gradient for the j* character. The selec-
tion gradient represents the direct force
of selection on a character, accounting for
phenotypic correlations with the other
characters (Lande, 1979) and is formally
equivalent to the partial regression of rel-

ative lifetime fitness on the character -

holding all other characters constant
(Lande, 1982; Lande and Arnold, 1983).
In the above equation, the first term rep-
resents the direct response to selection on
the character, G,,8,, while the other terms
represent the correlated responses to se-
lection.

We will now show that the selection
gradient can be partitioned into additive
parts corresponding to episodes of selec-
tion. We begin by deriving a partitioning
of the selection differential.
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RESULTS
Partitioning the Selection Differential

A partitioning of the selection differ-
ential into additive parts corresponding
to an arbitrary number of selection epi-
sodes follows directly from Lande’s
(1980) discussion of selection differen-
tials when sexual selection follows nat-
ural selection (an example of the two ep-
isode case). Successive episodes of
selection might shift the mean in different
directions, but the total shift in mean af-
ter all episodes must be equal to the sum
of the shifts imposed by each episode.
Thus, the total shift in mean, or the se-
lection differential, after » episodes of
selection is

S=z,— %

= (zm - Zm—l) + (Zm—l - 2m—2)
+ ...+ (-2
= 2 (Zk = Zk-1)s

i )

where Z is the character mean before se-
lection, Z,, is the mean after » episodes
of selection, Z, is the mean after k inter-
mediate episodes of selection and (2, —
Z,_,) is the shift induced by the k* epi-
sode of selection.

In order to calculate the mean of the
character after some arbitrary number of
episodes, we will need to know how fit-
ness and the character frequency distri-
bution change with each selection epi-
sode.

Let W, be the absolute fitness of an
individual at episode k of selection. Let
p be the frequency of individuals with
phenotype z before selection and let p,
be the frequency of these same individ-
uals after the k™ episode of selection. Let
the components of fitness be multipli-
cative, such that the total absolute fitness
of an individual is

W = H Wk'
k=1

Let the relative fitness of an individual at
episode k of selection be

=
I

(3a)
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We = Wi/ W,, (3b)

where W, is the average absolute fitness
at the k™ episode.

The initial frequency distribution of the
phenotypes, p, changes as a result of each
episode of selection: from p to p, = pw,
after the first episode, to p, = p,w, after
the second episode and so forth. In gen-
eral, after k episodes of selection, the fre-
quency of individuals of phenotype z
will be

Di = Dr—1Wk- 4
Thus the average absolute fitness at the
kt selection episode is
Wk = E D1 Wi (5)
The mean phenotype before the onset of
selection is, by definition,

z= D pz (6a)

and the mean of the phenotypic character
after k episodes of selection will be

Z, = E Di2z

= E Di— Wi Z. (6b)

We can now show that each compo-
nent of the partitioned selection differ-
ential is itself a covariance of character
value and relative fitness. Since the shift
in mean due to the k™ episode of selec-
tion is

5, — 5, = (E pkz> -z,
(zn]

— Zk—15

(7a)

and since Z,_, is the character mean at
the onset of the k' selection episode and
w, = 1, expression (7a) is a standard
expression for a covariance. Thus the se-
lection differential corresponding to the

k™ episode of selection is
Zk - Zkﬁl = COV(Z, Wk),

(7b)

which is the covariance between phe-
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notypic value and the A component of
relative fitness, S,. Consequently, using
(2) and (7b),

S = 2 Cov(z,wy)
k=1

= ,; S ®)

This accomplishes an additive parti-
tioning of the selection differential for an
arbitrary number of selection episodes.
The extension to the partitioning of the
multivariate selection gradient, S, is
straightforward, since expression (8) can
be applied individually to each element
in the column vector.

Partitioning the Selection Gradient

The partitioning of the selection gra-
dient, 8, follows simply from the above
results. Substitituting the column vector
version of (8) into the expression 8 =
P-'S yields the m-episode partitioning
of the selection gradient. Thus the total
selection gradient for a particular char-
acter,

B =2 B
k=1

This derivation also reveals that the
components of the partitioned selection
gradient, namely 8,, are themselves par-
tial regressions of relative fitness at the
k™ episode on phenotypic value holding
all other phenotypic characters constant.

In the preceding derivation the selec-
tion gradient corresponding to a partic-
ular selection episode was calculated us-
ing the phenotypic variances and
covariances before selection, P. These
phenotypic variances and covariances
may be changed by selection. Conse-
quently in order to describe the partial
regression of relative fitness on character
at a particular selection episode, k, one
might use the phenotypic variance-co-
variance matrix corresponding to the on-
set of that episode, P,, so that

B*c= P, 'S
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This selection gradient might give a more
accurate picture of selection at that epi-
sode than 8, = P~'§), but it has the dis-
advantage that individual selection gra-
dients might not sum to the total selection
gradient 8.

The Opportunity for Selection and its
Partitioning

Variance in Fitness as the Opportunity
for Selection.—There are three reasons
for viewing variance in fitness as the op-
portunity for selection. First, as Crow
(1958) pointed out, the change in mean
fitness within a generation due to selec-
tion is equivalent to the variance in rel-
ative fitness. Consequently, if fitness were
completely heritable, the change in fit-
ness from one generation to the next
would be equivalent to the variance in
relative fitness. Second, if selection is not
frequency-dependent, the change in fit-
ness across generations will equal the ad-
ditive genetic variance in fitness (Fisher,
1930, 1958). Since this genetic variance
cannot exceed the phenotypic variance
in fitness, fitness variance can be viewed
as a constraint on fitness evolution. Fi-
nally, as we show in a later section, fitness
variance places an upper bound on the
force of selection that can act on any phe-
notypic character.

The opportunity for selection, I, has
also been called the “index of total se-
lection” and the ‘‘intensity of selection”
(Crow, 1958, 1962; Wade, 1979; Wade
and Arnold, 1980). Many of our col-
leagues prefer “opportunity for selec-
tion” because it gives a more accurate
impression of the meaning of I. “Op-

portunity for selection” is also preferable

because it avoids confusion with the
standardized selection differential, i,
which has also been called the ““intensity
of selection” (Hartl, 1980; Falconer,
1981).

The Relationship Between the Oppor-
tunity for Selection, the Selection Differ-
ential and the Selection Gradient.— These
three measures of selection are related by
the standard statistical relationship be-
tween variance, covariance and regres-
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FiG. 1. A plot of hypothetical data showing the

relationship between the univariate selection gra-
dient and the opportunity for selection, I. In the
center of the figure relative fitness, w, is shown as
a function of phenotypic character value, z. The
univariate selection gradient is the slope of the
regression of relative fitness on character, z. The
covariance of w and z is the selection differential.
The marginal distribution of relative fitness is shown
on the right hand side. The variance in relative
fitness is I, the opportunity for selection.

sion. The opportunity for selection is the
variance in relative fitness, the selection
differential is the covariance between rel-
ative fitness and character, and the se-
lection gradient is the partial regression
of relative fitness on character, holding
all other characters constant. The rela-
tionships are easiest to visualize in the
univariate case in which selection acts
directly on a single phenotypic character
(Fig. 1). In this case the selection gradient
is the ordinary regression of relative fit-
ness on character (covariance of relative
fitness and character divided by the char-
acter’s phenotypic variance before selec-
tion, P). The opportunity for selection, I,
is the variance of the marginal distribu-
tion of relative fitness.

Since the squared correlation coeffi-
cient must be equal to or less than unity,
the squared selection differential must be
equal or less than the product of phe-
notypic variance in a character before se-
lection and the total opportunity for se-
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lection, S? < PI. Since S/P” is the
intensity of directional selection on the
character, i, the absolute value of this
intensity must be equal to or less than
the square root of the total selection op-
portunity or the standard deviation in
relative fitness,

li| = I*.

In other words, the number of phenotyp-
ic standard deviations that a character
can be shifted by directional selection will
always be equal to or less than the stan-
dard deviation in relative fitness.

Partitioning the Total Opportunity for
Selection.—The total opportunity for se-
lection, I, is defined as the variance in
total relative fitness (Crow, 1958, 1962).
This is equivalent to the variance in ab-
solute total fitness divided by the square
of mean total fitness. Crow also showed
that the total opportunity of selection is
equal to the change in relative total fit-
ness caused by selection,

Ir=v, (9a)
= Vy/W* (9b)
= (Wy— W)/W (9¢)
= Aw, 9d)

where V,, and V,, are, respectively, the

variances in relative and absolute total
fitness, W is the mean absolute fitness
before selection and W is the mean ab-
solute fitness after selection (Crow, 1958;
O’Donald, 1970).

If the total force of selection can be
subdivided into separate, more or less
discrete, episodes of selection acting at
different points in the life cycle of an or-
ganism, then I can similarly be parti-
tioned into components. Crow (1958) de-
rived such a partitioning for two inde-
pendent episodes of selection.

The advantage of our partitioning is
that we do not assume independent ep-
isodes of selection. In contrast Crow
(1958, 1962) assumed that there was no
correlation between fitness at different
episodes (see also Doyle and Myers,
1982). We also permit an arbitrary num-
ber of selection episodes. A further crit-
ical feature of our approach is that we
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evaluate the means, variances and co-
variances of fitness components using the
phenotypic distribution that is present at
the start of each episode. Thus while our
formulation gives the same total oppor-
tunity for selection, I, as Crow’s ap-
proach, it gives a different partitioning.

These differences between the two par-
titionings are particularly important in
the measurement of selection in natural
populations. With our partitioning lack
of knowledge regarding a previous epi-
sode of selection does not influence the
measured opportunity for selection for
subsequent episodes; with Crow’s parti-
tioning, however, the measurement is
necessarily affected.

Suppose there are a total of # episodes
of selection. The mean absolute fitness
before selection will be

W= pW,

where p is the frequency of individuals
with fitness 1. After m episodes of se-
lection the mean total absolute fitness
will be

(10

Wr= 2 puW. (11)

Because our equations (10) and (11) de-
fine W and W, in the same manner as
Crow (1958), the total opportunity for
selection, /, is the same. Substituting (3a)
into (10), using (4) and (5), we find that

w=1I w.
k=1

and so, substituting (10) and (11) into (9¢)

= W{Z P W — EpW}
=2 P — 2 pw

\ =Epmw—1
=n*'2w2— 1,

in which #z is the number of individuals
in the population.

We can now derive a partitioning of
this total opportunity for selection. We

~

(12)
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desire a partitioning that includes vari-
ances in relative fitness at the separate
episodes, I,. Consider the case in which
total selection is composed of three se-
lection episodes. The total variance in
relative fitness is, from exp. (12),

I= 2, p(w— 1y
=nt 2w — L (13)

The opportunity for selection at the first
episode is

I,

2 p(w, — 1)
=n! 2 w2 — 1.
Similarly, I, and I, are given by
L= 2 p(w, — 1)?
=n! E wiw,2 — 1,
I, = 2 D2 (ws — 1)?

=n! 2 wiw,ws2 — 1.

14

15)

(16)

In general, the opportunity for selection
at the k" episode is

I = pr_ (W, — 1)?
k—1

nt [ wwd — 1. (17)
r=1

In general, the episode opportunities
will not sum to the total opportunity, even
when selection acts independently at each
episode. The discrepancy between the
sum of the episode opportunities and the
total is due to covariance between selec-
tion episodes. For example, when there
are three selection episodes,

I=II+12+I3+C, (18)

where C is a residual term representing
a sum of covariances between fitness
components. These covariances have two
sources: non-independence of selection
and induction by zero fitnesses at some
early episode. We have not been able to
separate these two kinds of contributions
but we give a decomposition of the re-
sidual term into constituent covariances
in the APPENDIX.
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If fitness components are multiplica-
tive, one can obtain a simpler decom-
position of fitness variance by taking the
logarithms of fitness components and us-
ing the standard equation for the vari-
ance of a sum. A major disadvantage of
this approach arises if fitness compo-
nents take zero values, for in such cases
logarithms are undefined. One could by-
pass this difficulty by adding a constant
to all fitnesses before taking logarithms
but the resulting fitness variances bear no
simple relationship to dynamic equa-
tions for evolutionary change.

Selection Gradients for
Fitness Components

In order to model the evolution of fit-
ness components we need to know their
selection gradients. If fitness components
are defined so that their product is total
lifetime fitness, then their selection gra-
dients take a remarkably simple form.

Lande (1979) shows that the selection
gradient for phenotypic character z is
equivalent to the partial derivative of
mean total fitness with respect to the
character mean,

z

If we define multiplicative fitness com-

ponents such that W = H W, then

r=1
taking the partial derivative of W with
respect to W, using the chain rule, we
find that

Dividing this expression by mean total
fitness, we find that the selection gradient
on the k™ component of fitness is

B, = (19a)

WoW,
1
Wi

(19b)
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So we have the simple result that the se-
lection gradient on a multiplicative com-
ponent of fitness is equal to the reciprocal
of that component’s mean value. For ex-
ample, if fecundity is the k'* fitness com-
ponent, then the expected change in total
fitness resulting from a unit change in
fecundity, holding all other fitness com-
ponents constant, is equal to the recip-
rocal of average fecundity. In other words,
the episode of selection in which selec-
tion is the strongest (smallest W), will
have the largest selection gradient.

We can model the evolution of a fitness
component, of a life history trait, using
exp. (19) and exp. (1). Application of the
latter equation assumes a multinormal
distribution of fitness components. For
example, the change in the mean of the
first fitness component, across genera-
tions, is

AWI = G”/Wl + GIZ/_WZ + G|3/W3
+. .+ G W, (20)

and similarly for any other fitness com-
ponent in the multiplicative series.
Expression (20) shows that the evolution
of a fitness component directly depends
only on its additive genetic variance and
mean phenotypic value and on its addi-
tive genetic covariances with other fit-
ness components and the mean values of
those other fitness components. Neither
the phenotypic variances of fitness com-
ponents nor phenotypic correlations be-
tween fitness components have direct ef-
fects on the evolution of fitness
components. The crucial role of additive
genetic covariances in life history evo-
lution is further discussed by Lande
(1982).

DiscussioN

We have shown how selection can be
measured in statistical terms that have a
direct relationship to equations for evo-
lutionary change. Selection can be mea-
sured in phenotypic terms without
knowledge of character inheritance. Fur-
thermore, the measures we discuss make
no assumptions about the form of selec-
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tion. For example, one need not assume
that truncation or purely directional se-
lection acts on the characters.

Using extensions of the methods we
outline, one can measure forces of sta-
bilizing and disruptive selection and re-
construct the selection surface that acts
on phenotypic characters (Lande and Ar-
nold, 1983). Arnold (1983) discusses the
relationship to measures of performance
used in physiological ecology and func-
tional morphology.

Selection Opportunities, Differentials,
Intensities and Gradients.—These four
measures of selection have different uses.
The opportunity of selection measures the
overall constraint on the evolution of fit-
ness and phenotypic characters that is
imposed by variance in fitness. The se-
lection differential measures both the di-
rect force of selection on a character and
indirect forces due to selection on related
characters. The selection intensity (stan-
dardized selection differential) is useful
for population comparisons because it
measures the force of selection in units
of phenotypic standard deviation. All of
these measures of selection are unaffected
by the particular choice of phenotypic
characters. The selection gradient is af-
fected by the characters that are included
in a multivariate study, because it is a
partial regression. The virtues of the se-
lection gradient are that it measures only
the direct forces of selection on a char-
acter and it has the most direct relation-
ship to equations for evolutionary change.

One of our primary results is a tech-
nique for partitioning directional selec-

tion into parts corresponding to segments

of the life cycle. This result has many
empirical and conceptual applications.
In a companion paper we review some
of these applications (Arnold and Wade,
1984). An important aspect of our ap-
proach is that it can be applied to phe-
notypic characters. Prout (1965) and
Christiansen and Frydenberg (1973) dis-
cuss analogous partitionings of selection
on gene frequencies but there is no simple
way to apply their solutions to polygenic
phenotypic characters.
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SUMMARY

The primary contributions of this pa-
per are, first, an elucidation of the rela-
tionship between various measures of se-
lection and their relationships to
predictive equations for evolutionary
change. We show that the opportunity for
selection (variance in relative fitness)
places an upper bound on the amount
that the mean of any character can be
shifted by directional selection. Second,
we offer several solutions to the problem
of analyzing multiple selection episodes
(e.g., sexual versus natural selection). We
show how the total effect of directional
selection can be partitioned into parts
corresponding to particular selection ep-
isodes or fitness components. The op-
portunity for selection cannot be so
readily partitioned because of covari-
ances between fitness components. We
present a rather complex partitioning
which may nevertheless be useful in par-
ticular applications.
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ApPPENDIX. Covariances among selection episodes
when fitness components are multiplicative.

In order to account for the general case of non-
independent selection we must consider covari-
ances between fitness at successive episodes. We
will refer to these covariances between relative fit-
nesses as cointensities and denote them COL.

The covariance between relative fitness compo-
nents corresponding to the first two episodes,
weighting individuals equally, is

COI(1,2) = ) p(w, — 1)(w, — 1)

1= n' D w,
This covariance is changed by selection, so that

after the first episode the covariance between the
first two fitness components is

(A1)

COI(1,2|1) = 2 py(w, — 1)(w, — 1)
=n! E ww, — n! 2 w2
The initial covariance between relative fitness after

the first two episodes, w,w,, and the second fitness
component, w,, is

(A2)

COI(12,2) = D, p(w,wy — 1)(w, — 1)
=n! E wyw,2 — nt E W,
in which each individual is weighted equally. After

the first selection episode, the covariance between
w,w, and w, will be

(A3)

S. J. ARNOLD AND M. J. WADE

COI(12,2|1) = 3} p\(wmyw, — 1)
(w, — 1)
= p! 2 w2w,2
— n! E W2W,,
in which each individual is weighted by its fitness
at the first episode or w;.

We can now show that the total variance in rel-
ative fitness after the first two episodes, I,,, is the
sum of a series of variances and covariances. The
opportunity for selection after the first two epi-
sodes is

!12 = E p(wyw, — 1)?
=p! 2 wew2 — 1
=1 + 1,
+ COI(1, 2) + COI(1, 2|1)
+ [COI(12, 2|1) — COI(12, 2)].

(A4)

(A5)

The final term in expression (A5) is the change in
covariance between fitness after the first two epi-
sodes and the second fitness component caused by
selection during the first episode.

In order to account for the selection opportunity
that occurs after the first two episodes, we need to
consider some additional covariance terms. The
initial covariance between fitness after the first two
episodes, w,w,, and the third fitness component,
w;, is

COI(12, 3) = 2, p(w,w, — 1)(w; — 1)

1—nt E Wi,
in which each individual is weighted equally. It is
interesting to note that this covariance is the sum
of the covariance between the first and third fitness
components, COI(1, 3), and the covariance be-
tween the second and third fitness components,
CoI(2, 3):
COI(1, 3) = 2 p(w, — 1)(w; — 1)
=n! E wiw; — n! E Wi,
COI2, 3) = 2 pi(w, — 1)(w; — 1)
=1—-nt! 2 Wy Wsy,

(A6)

(A7)
so that

COI(12, 3) = COI(1, 3) + COI(2, 3). (A8)

COI(12, 3) is changed by selection, so that after the
second episode, the covariance between w,w, and
w; is

CO0I(12, 3|12) = 2 po(wiw, — 1)(w; — 1)
= ) wiww,
— p! E w2w,2,

We need two additional covariance terms. The

(A9)
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initial covariance between total relative fitness,
w,w,w; = w, and the third fitness component is

COI(123, 3) = 2, p(w,wyw; — 1)
(ws — 1)
=n! E wyw,ws?
— pl 2 Wi,
in which each individual is weighted equally. This
covariance is changed by selection, so that after the

first two episodes of selection the covariance be-
tween w,w,w; and w, is

COI(123, 3|2) = 2, pi(wiwyws — 1)
‘(ws — 1)
=n! E wi2w,2wy?
— nt E Wi2W,2w,
= 5! E w2

- n! E wiiw, 2w,

(A10)

(All)
We derive the partitioning for the total oppor-
tunity of selection using the above expressions:
I=1, + 1L, + I
+ COoI(1, 2) + COI(1, 2|1)
+ COI(12, 3) + COI(12, 3|2)
+ [COI(12, 2|1) — COI(12, 2)]

+ [COI(123, 3|2) — COI(123, 3)] (Al2)

In general, after m episodes of selection, the total
opportunity for selection can be partitioned into
the following terms

I=>1
k=1
m—1 m—1
+ C01<H rk+ 1)
k=1 r=1
m—1 m—1
+ > C01<H rk+ 1|k>
k=1 r=1
m—1 k+1
+ [COI(] IIrk+ 1|k>
k=1 r=2
k+1
- COI(I IIrk+ 1)]
r=2

(A13)
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in which, when for example m = 4, the symbol

m—1

H r denotes 123, and when k = 2, the symbol
r=1

k+1

1 JI denotes 123. This result accomplishes the de-
=2

sired, additive partitioning of the total opportunity
for selection into parts corresponding to the sepa-
rate episodes of selection. The large number of co-
variance terms is unfortunate, but these will often
be biologically interesting. An example of inter-
pretable cointensities in a three episode analysis of
selection is provided in the companion paper (Ar-
nold and Wade, 1984). The additive nature of the
partitioning is preserved even when successive ep-
isodes are collapsed or not formally recognized.

Collapsing Episodes of Selection.—The parti-
tioning of the total selection opportunity has the
property that, if two successive episodes cannot be
distinguished and are considered as one, say epi-
sodes 1 and 2 are collapsed to represent 1*, then 7
becomes

I=1Iy+ 1,
+ COI(1*, 3)
+ COI(1*, 311%)
+ [COI(1*3, 311%)

— COI(1*3, 3)], (Al4)
where
L«=1 +1,
+ COI(1,2)
+ COI(1,2]1)
+[COI(12,2]1)
- COI1(12,2)],

COI(1*,3)= COI(12,3),
COI(1*,3|1%)= COI(12,3]2)
[COI(1*3,3|1%) — COI(1*3,3] =[COI(123,3]2)
— COI(123, 3)].

(A15)



