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Abstract.—Following principles used by A. J. Bateman, we identify the relationship between
fecundity and mating success as the central feature in the operation of mating systems. Using
selection theory from the field of quantitative genetics, we define the sexual selection gradient
as the average slope of the relationship between fecundity and mating success and show how
it can be estimated from data. We argue that sexual selection gradients are the key to understand-
ing how the intensity of sexual selection is affected by mate provisioning, parental investment,
and sex ratio.

We lack a conceptual framework that integrates the various perspectives on
the evolution of mating systems despite a series of seminal contributions over
the past few decades (e.g., Orians 1969; Trivers 1972; Emlen and Oring 1977;
Wells 1977; Alcock 1980; Kluge 1981; Thornhill and Alcock 1983; Verrell 1989;
Clutton-Brock 1991; Gwynne 1991). Such an integration would facilitate connec-
tions between the many disparate theoretical contributions in this area, formal
links with evolutionary theory, stronger empirical analyses with more tightly de-
fined variables, and phylogenetic comparisons. The aim of this article is to at-
tempt such an integration, with a special focus on the connection between mating
systems and selection theory.

Key contributions in mating system theory seem disconnected because they
deal only with particular aspects of selection. For example, Bateman’s (1948)
important article deals with the relationship between fecundity and mating suc-
cess and why that relationship differs between males and females. The relation-
ship between fecundity and mating success is in turn modified by nuptial gifts
(see, e.g., Thornhill 1976) and by parental investment (see, e.g., Trivers 1972).
Some of Bateman’s conclusions dealing with the variance of mating success were
later formalized in other work (Wade 1979; Wade and Arnold 1980). Parker (1978),
Baylis (1981), and Sutherland (1985a) discussed how mate search and handling
times affect mating success. And yet other workers have sought the environmen-
tal and social causes of male and female dispersion patterns and encounter rates
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and their relations to the potential for monopolization of mates (Orians 1969;
Emlen and Oring 1977; Alcock 1980; Thornhill and Alcock 1983; Vehrencamp
and Bradbury 1984; Ims 1988; Sullivan 1989; Graves and Duvall 1990; Schwag-
meyer 1990; Davies 1991). How can these disparate contributions be pulled to-
gether?

An additional challenge is provided by recent advances in molecular genetics.
Techniques such as DNA fingerprinting promise routine diagnosis of paternity
and maternity in natural populations (see, e.g., Gibbs et al. 1990). The fruits of
such diagnosis, applied to a large sample of progeny in a population, can be
visualized as a parental table with rows and columns representing, respectively,
potential mothers and fathers and with entries representing the number of progeny
produced by each possible parental combination. We depart from some past
attempts at conceptualization of mating systems by seeking a framework that
makes full and explicit use of the data inherent in the parental table. Clutton-
Brock and Vincent (1991), for example, use only the most extreme male and
female parent in a population sample to characterize the mating system. Their
approach is ad hoc and at best a shortcut. Our approach is to seek concepts that
make full use of the data that are becoming available as molecular genetics sweeps
into behavioral ecology and to anchor those concepts in formal selection theory.

Concepts of selection used in the field of quantitative genetics enable us to see
connections between the key variables that dominate discussions of mating sys-
tems (mating success, parental investment, mate monopolization, nuptial gifts,
rates of mate encounter, etc.). Selection can be viewed as a statistical relationship
between traits (the measurable attributes of individuals) and fitness (Lande and
Arnold 1983). The characters that affect fitness can be arranged in a hierarchy
(Falconer 1989). A useful ordering of traits that affect male fitness (measured as
a progeny count) at a particular age is shown in figure 1. In the first rank
are the primary components (fecundity and mortality) of age-specific fitness, the
principal traits in discussions of life-history evolution. In the second rank are the
proximate determinants of age-specific fecundity and mortality. To analyze mat-
ing systems we have found it convenient to recognize mating success and fecun-
dity per mate as the proximate determinants of age-specific fecundity. In the third
rank are the primary determinants of mating success and mate fecundity (e.g.,
mate-cycling time, mate persuasive ability, nuptial gifts, and parental invest-
ment). Finally, in the fourth rank are traits that influence the third rank (e.g.,
mate search time, male weaponry, courtship pheromones, and other tools of mate
persuasion) and that may affect age-specific mortality. A diagram analogous to
figure 1 could be drawn for females.

Variables in the ranks closer to fitness can be defined so that they have easily
specified relations to fitness. Standard demographic theory specifies the relation-
ships between age-specific fecundity and mortality and lifetime fitness and so
characterizes the selection that acts on those fitness components. As we move
farther away from fitness to characterize the primary determinants of age-specific
fecundity, we retreat from generality because the relationship between primary
determinants and fecundity changes in different types of mating system. Never-
theless, the relationship between mating success and fecundity emerges as a key
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Fic. 1.—A hierarchy of traits that affect age-specific fitness of males, displayed as a path
diagram. The symbols on paths denote selection coefficients known as selection gradients
and are defined in the text. For simplicity, residual contributions to fecundity, fecundity per
mate, and mating success are not indicated on the diagram.

component of selection in mating systems, and so, as an important target of
empirical studies.

In the sections that follow we analyze selection as it operates in mating sys-
tems, beginning close to fitness itself and then working outward in the trait hierar-
chy (fig. 1) toward traits that classically have been considered sexually selected
(e.g., male weaponry and agents of mate persuasion; Darwin 1871). We begin
with a review of phenotypic selection in age-structured populations (Lande 1982)
so that we can use those results to address the problem of measuring selection
in animals that breed over a series of seasons. We then focus on the relationship
between mating success and fecundity, a primary component of sexual selection.
We use a series of models to explore that relationship in a variety of mating
systems (e.g., systems with and without nuptial gifts and parental care). Our goal
is to analyze the potential contribution of various factors to sexual selection.

SELECTION THEORY

Evolution depends on both inheritance and selection. A useful formalization
of this statement is provided in the field of quantitative genetics, which deals with
the per-generation change in multiple traits each affected by many genes. The
change in the means of multiple traits from one generation to the next can be
predicted from a standard equation from quantitative genetics,

Az = GB, (1)
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in which the element AZ; of the column vector AZ is the per-generation change
in the mean of the ith trait; G is a symmetric matrix of additive genetic variances
and covariances (with additive genetic variances as diagonal elements and addi-
tive genetic covariances as off-diagonal elements); and B is a column vector of
selection coefficients in which B; represents the force of directional selection
acting directly on the ith trait (Lande 1979). The selection coefficients, B, are
known as selection gradients and are each equivalent to a partial regression of
relative fitness on a trait, with other traits held constant,

B=Pls, @

with P representing the phenotypic variance-covariance matrix of the traits before
selection (Lande and Arnold 1983) and with the selection differential

s = COV[w(z), z], 3)

a column vector of covariances between relative fitness, w(z), and the traits, z
(Robertson 1966). Thus, the relationship between relative fitness and the traits
can be represented as a multiple regression equation,

W(Z)=C+B|ZI+BzZz+...+BnZn+€, (4)

in which ¢ is a constant, z; is the value of the ith phenotypic trait, and € is an
error term. Equation (4) may be visualized as a path diagram (Wright 1934, 1968;
Li 1975) (fig. 2a).

Relative fitness in a population that is neither increasing nor decreasing in
numbers is simply the number of progeny (commonly counted at the zygote stage)
produced in a lifetime, scaled so that its mean is one. We shall, however, be
concerned with populations in which this simple progeny count concept of life-
time fitness is complicated for two reasons: population size may be changing,
and each mature individual may reproduce over a sequence of breeding seasons
(or ages). Fitness in such populations has been analyzed by Charlesworth (1980)
and Lande (1982), building on the demographic theory of Lotka (1956), Fisher
(1958), and Keyfitz (1968). The relative fitness of the phenotypic class z at a
particular age a, w,(z), is the product of the probability of survival to age a,
1,(z), and fecundity at age a, m,(z):

w,(z) = 1,(2)m,(z). (%)
The intrinsic rate of increase for the population, r, is defined by the equation

w

> e @m, @) =1,

a=0

in which o is the age at the last reproduction, and it is assumed that reproduction
is concentrated into a brief breeding season each year (Leslie 1966). In a popula-
tion that may be increasing or decreasing, lifetime fitness is a weighted sum of
the expected number of progeny that are produced at each age:

w(z) = B,,wo(z) + B, wi(z) + ... + B, w,(2), (6)
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FiG. 2.—Path diagrams illustrating the decomposition of lifetime selection into parts repre-
senting age-specific fecundity and mortality selection. The double-headed arrows represent
phenotypic covariances between phenotypic traits, denoted zy, z,, . . . , z,. a, Path diagram
representing the multiple regression of lifetime fitness, w(z), on the phenotypic traits. Direct
paths from the traits to lifetime fitness are total selection gradients (e.g., 8;). For simplicity,
a residual effect on lifetime fitness is not indicated. b, Path diagram showing the decomposi-
tion of total selection on each trait into paths representing age-specific selection. w,(z),
Fitness at age a. For simplicity, residual effects on age-specific fitness are not shown. c,
Path diagram showing the decomposition of age-specific selection on each trait into paths
representing age-specific fecundity and mortality selection. m,(z), Fecundity at age a; p.,(z),
mortality at age a. For simplicity, residual effects on age-specific fecundity and mortality
are not indicated.
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in which
By, =e T, @)

with T denoting the generation time, or mean age of reproducing parents (Lande
1982). The coefficients B,, are the selection gradients for age-specific fitnesses.
Multiple regression equation (6) may be visualized as a path diagram (fig. 2b).
We see from equations (6) and (7) that, in a growing population (» > 0), progeny
produced at early ages receive more weight in the tally of lifetime fitness than
progeny produced at later ages (when the population is larger).

RESULTS

Selection within a Season as a Component of Lifetime Selection

Many empirical studies of mating systems are conducted in a single breeding
season and focus on fecundity relationships. Consequently, it is important to
consider the relationship between fecundity in a particular season (at a particular
age) and lifetime fitness. Lande (1982) has shown that the lifetime fitness of a
particular phenotypic class may be represented as a weighted sum of age-specific
fecundity, m,(z), and mortality terms, p,(z):

W(2) = > (B, ma(2) + By, o], @®)
a=0
with
Bm,, = e_mwa/Tma ’ (93)
and
B, = — Z e "W, (9b)
y=a

in which w, is the average over all phenotypic classes of age-specific fitness,
w,(z), and 7, is the average over all phenotypic classes of age-specific fecundity,
m,(z) (Lande 1982). Equation (8) may be represented by the path diagram shown
in figure 2c. Selection coefficients for age-specific fecundity and mortality selec-
tion on each trait in z may be obtained by substituting equation (8) into equation
(3), using the definition of partial regression coefficients (Kendall and Stuart 1979,
p. 346),

Bom, = P7's,, (10a)

a

and
B.,, =P's,,. (10b)

in which s, is the vector of covariances between fecundity at age a and the traits
and s, is the vector of covariances between mortality at age a and the traits.
Referring to figure 2c, we see that these coefficients represent the direct paths
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from the traits to age-specific fecundity and mortality. Using equation (2), we
find that total selection on a trait, z;, can be represented as a sum of age-specific
fecundity and mortality selection coefficients:

Br= > BBy  Bo, Byl (11)
a=0

Thus, total selection on a trait can be viewed as a sum of direct paths connecting
the trait to lifetime fitness. Along any path (e.g., from z, to my(z) to w(z)),
selection can be viewed as a product of selection gradients (e.g., B, 0B ). Fur-
thermore, the selection gradients for age-specific fecundity and mortality, 8,,,
and B, , represent the final common paths to fitness for selection that acts at any
age.

In the sections that follow we shall concentrate on selection that acts on a
cohort of animals within a particular breeding season. Actual data that would
mesh with these conceptualizations would consist of observations of phenotypic
traits (mate search time, mate-handling time, etc.), components of fecundity
(number of mates and their average fecundity), and fecundity and mortality on
each individual in a sample from a cohort. In many actual data sets age is un-
known or, if known, some cohorts may be small in number. In the Discussion
section we shall take up these problems. For the moment, our focus is selection
that acts on a set of like-aged individuals in a single breeding season. Accordingly,
in the sections that follow we will subscript fecundity with symbols that denote
males or females, rather than age.

Ra’

Effects of Mating Success on Fecundity within a Season

The contributions of age-specific fecundity and mortality to lifetime fitness can
be viewed as selection gradients and can be estimated from a life table (eqq. [9]).
Selection on fecundity at a particular age is simply a function of average relative
fitness at that age, the growth rate of the population, and generation time (eq.
[9a]). The selection gradient for fecundity at a particular age represents the final
common path for selection on all those traits that affect fecundity (fig. 2¢).

The number of mates that bear the progeny of an individual male or sire the
progeny of an individual female is more directly related to fitness than a simple
count of all mating partners. For this reason, we will refer to the number of mates
that sire or bear progeny as mating success (Wade and Arnold 1980). When we
consider mating systems, the most important attribute affecting fecundity is mat-
ing success.

Mating success, fecundity, and sexual selection gradients.—The relationship
between mating success and fecundity is a critical aspect of the mating system
for several reasons. First, this relationship represents the final common path to
fitness for all sexually selected traits. Consequently, it represents an important
parameter in empirical studies of sexual selection. Second, the differences be-
tween males and females in the effect of mating success on fecundity provide a
quantitative way of predicting the form of the mating system. And, third, the
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functions relating male and female fecundity to mating success provide a way of
viewing the effects of mate provisioning and parental investment.

Bateman (1948) stressed the importance of the correlation between mating suc-
cess and fecundity. In male Drosophila this correlation was strong, but in females
it was weak. Bateman viewed the higher variance of mating success in males as
a mere sign of sexual selection, but he viewed the stronger correlation in males
between mating success and fecundity as the cause of sexual selection. To make
an explicit connection to selection theory it will be useful to focus on the regres-
sion of fecundity on mating success, which is the number of additional progeny
to be expected from each additional mate, rather than on the correlation.

The importance of the relationship between mating success and fecundity is
that it defines the final common path to fecundity for all sexually selected traits.
Selection can be conceptualized as the statistical relationship between a particular
trait and fitness. In particular, directional selection on a trait can be quantified
as the partial regression of fitness on the trait, with other traits held constant
(Lande and Arnold 1983). In a path diagram representation of this argument,
directional selection on the trait can be viewed as the direct statistical path from
the trait to fitness (figs. 1 and 2). For a trait that has diverse effects on fitness,
this direct path can be partitioned into parts that represent components of the
total directional selection acting on the trait (Arnold 1983). We can view sexually
selected traits as those traits that exert part of their effect on fecundity via their
effects on mating success. For such traits, total sexual selection is the direct path
that leads from the trait to fecundity via mating success and from fecundity to
fitness. Because the final segment of the path from any sexually selected trait to
fecundity is the segment from mating success to fecundity (fig. 1), the relationship
between mating success and fitness defines a final common path for all sexually
selected traits. We will refer to this final common path for sexually selected traits
as the sexual selection gradient. How would we measure the sexual selection
gradients for males and females in a particular population?

Estimating sexual selection gradients.—We will illustrate the steps in the cal-
culation of sexual selection gradients for males and females using Bateman’s
(1948) data for Drosophila melanogaster. Bateman was able to determine the
mothers and fathers of about 9,500 individual fruit flies by using visible genetic
markers. The resulting data are in many ways comparable to data that could be
achieved today with DNA fingerprints. At each trial Bateman placed three or
four males together with an equal number of females for a 3- or 4-d period during
which all matings and egg laying occurred. Bateman conducted his experiment
in six blocks (or series) of four to nine trials. Flies in the last two series showed
noticeably higher fecundities than flies in the first two series (presumably because
of a change in maintenance conditions), so Bateman pooled series 1-4 separately
from series 5-6 for data analysis, and so will we. In series 1-4 a total of 143
males and 143 females were potential fathers and mothers. The fathers could be
determined for about 4,759 offspring, and mothers could be determined for about
4,641 offspring (the actual numbers are not given by Bateman but can be esti-
mated from his published data summaries). Likewise for series 5—6, about 4,877
offspring were assigned to 72 potential fathers and about 4,849 progeny were
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assigned to 72 potential mothers. Once the assignment of parents has been accom-
plished, the number of mating partners that produced progeny (mating success)
can be determined for each potential parent as well as each parent’s total fecun-
dity. Average fecundity as a function of mating success is shown in figure 3. To
estimate the sexual selection gradient for each sex, we compute the slope of the
least-squares regression line relating fecundity to mating success. In Bateman'’s
series 1-4, the slopes are about 23 offspring per mate for males and 15 offspring
per mate for females (fig. 3a). In series 5-6, the slopes are about 39 offspring per
mate for males and two offspring per mate for females (fig. 3b). In other words,
in series 5—6, on the average, a male gains 39 offspring for each additional mate
but a female gains only two offspring for each additional mate. The sexual selec-
tion gradient for males is 1.6 times higher than the sexual selection gradient for
females in series 1-4; the male gradient is nearly 17 times higher than the female
gradient in series 5-6. Although one can calculate the regression slopes of Bate-
man’s data from his published summaries, statistical tests for male-female differ-
ences are difficult without recourse to the raw data. Statistical comparison of
regression slopes is described by Sokal and Rohlf (1981) and in many other text-
books.

The evident nonlinearity of female fecundity as a function of mating success
(fig. 3b) may worry some readers. This function may be curvilinear and asymp-
totic in females, but that does not invalidate the calculation of a linear regression
slope. Our aim is not to describe the relationship between fecundity and mating
success with a straight line. If description were the goal, one would try fitting a
second- or higher-order polynominal to the data. We do not claim that a straight
line fits the female data in figure 35 as well as a curved line. Our aim is to estimate
the directional selection gradient for mating success. It has been shown (Lande
and Arnold 1983) that such gradients are best estimated by a linear regression
slope even when the relationship is nonlinear. In other words, we are computing
a linear regression slope because it estimates a coefficient of directional selection
(the average effect of a change in mating success on fecundity), not because we
claim that a straight line is an adequate fit to the data.

The sexual selection gradients we have estimated for Bateman’s data apply to
the conditions in his experiment and may not prevail in nature. For example, in
other experimental studies, the fecundity of female D. melanogaster that have
mated two or more times is usually not different from the fecundity of females
that have mated only once (Lefevre and Jonsson 1962; Boorman and Parker 1976;
Prout and Bundgaard 1977; Pulvermacher and Timner 1977; but see Pyle and
Gromko 1978). Thus, under some circumstances there may not be a fecundity
premium on multiple mating by female Drosophila. In any case, to assess the
sexual selection gradient in a natural population one would need to determine the
number or proportion of surviving females that do not mate. Because the relation-
ship between female fecundity and mating success is nonlinear in D. melanogas-
ter, its average slope (the sexual selection gradient) will vary if the proportions
of females in different mating success categories change.

To simplify expressions for sexual selection gradients in the following sections,
we will assume that neither mating success nor its determinants (e.g., search and
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handling times and persuasion) at a particular age are correlated with mortality
at that or later ages. We will then view sexual selection as regressions of mating
success on attributes (or of fecundity on mating success) that do not hold mortal-
ity constant. Of course, in an analysis of actual data, no such assumption may
be necessary. Sexual selection gradients could be computed as partial regressions
that take into account effects on mortality.

FECUNDITY
(number of offspring)

FECUNDITY
(number of offspring)

L

=3

THE AMERICAN NATURALIST

n=40 38 43 19 3
809 MALES y=19+233x @
60 ®
40
20 -
0 FEMALES y = 12.7 + 14.7 X
n=7 85 45 6
0 1 2 3 4
n=5 30 23 14
°

1204 MALES y=18.0+39.5x

804
404
FEMALES y = 63.5+ 2.4 x
o{ © y
n=1 28 39 4
T 1I 2' 3'

MATING SUCCESS
(number of mates)

FiG. 3.—Regression analysis of Bateman’s (1948) data relating fecundity to mating success
in Drosophila melanogaster. Average fecundity for males (solid circles) and females (open
circles) is plotted as a function of mating success. Sample sizes for males and females are
shown, respectively, at the top and bottom of each figure. Weighted, linear regressions of
fecundity on mating success are shown for males (solid lines) and females (dashed lines).
The bivariate means for males and females coincide in each plot and are indicated with a
cross. a, Combined data for series 1-4. b, Combined data for series 5-6.
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The Effects of Mate Provisioning and Parental Investment on the Sexual
Selection Gradients of Males and Females

Mate provisioning (nuptial gifts) and parental investment are key aspects of the
mating system because they affect the sexual selection gradients of males and
females. If the male does not care for the offspring, his offspring production
may be an ever-increasing function of his mating success. In the absence of any
provisioning by her mate, the female may experience no gain in fecundity by
mating more than once in a breeding season. Mate provisioning changes her
sexual selection gradient, for now with each additional mating she may be able to
increase her fecundity. When one or both sexes care for offspring, the relationship
between progeny production and mating success may be asymptotic because
investment in broods early in the season may compromise the size of broods
produced later in the season with other mates. Thus, both mate provisioning
and parental investment can affect sexual selection gradients and so produce
fundamental differences in how sexual selection operates in males and females.

These ideas can be made more precise by modeling the relationship between
fecundity and mating success under various conditions of mate provisioning and
parental investment. In the following sections our focus is on selection that oper-
ates in an annual species or in a single breeding season of an iteroparous species.
We also assume a stationary population with no age structure (or data that have
been corrected for age structure). Appendix A lists the variables that we will use.
In each of the sections that follow we first make some simplifying assumptions
about the mating system so that we can express the average fecundity of males
or females as a function of average mating success. We then take the partial
derivative of average fecundity with respect to average mating success and
equate this partial derivative with the sexual selection gradient. This step relies
on results given in earlier articles (Lande 1979; Lande and Arnold 1983), which
show the equivalence of partial derivative and partial regression definitions of
selection gradients. Consequently, we obtain expressions for sexual selection
gradients that involve various key aspects of the mating system (e.g., the average
fecundity of the opposite sex and the effects of nuptial gifts and parental care on
fecundity). These expressions for sexual selection gradients enable us to identify
critical aspects of the mating system that affect sexual selection and to evaluate
their contributions.

No nuptial gift or paternal care of offspring.—A simple starting point is a
mating system in which the male’s fecundity increases linearly with his mating
success whereas the female’s fecundity fails to increase once she secures a single
mate (fig. 4, curve a). These circumstances come close to fitting at least some of
Bateman’s (1948) Drosophila data (fig. 3b). The female might mate two or more
times, but her fecundity does not increase after her first mating. In such systems,
a female’s multiple mating might, however, affect the progeny count of her mates.
Let us imagine a system with multiple paternity in which a male’s progeny number
by a particular female is simply an inverse proportion of the number of males
with whom she has mated. Then the proportion of a female’s progeny that a male
can expect to sire is 1/H,, where H, is the harmonic mean mating success of
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Fic. 4.—Relationships between fecundity and mating success in males and females when
only females provide parental care. The relationship of fecundity to mating success is linear
in males. The expected number of progeny produced by a female with one mate is 7.
When the male provides no nuptial gift, female fecundity does not increase if the female
mates more than once (curve a). When the male provides a nuptial gift, female fecundity
increases by the amount kmq; with each mating beyond the first (curve b).

females mating one or more times. A discussion of harmonic mean mating success
and mixed paternity of broods can be found elsewhere (Wade and Arnold 1980).
Let m; be the average fecundity of females with one or more mates and let m;
be the average fecundity of all females. It follows that m; = 7i/p, where p is the
proportion of females that mate one or more times and bear progeny. Thus, on
the average, a male’s mate will produce m; progeny and the average proportion
of progeny that the male can expect to sire is 1/H,. If it is assumed that there is
no correlation between male mating success and mate fecundity, expected fecun-
dity in the male population, m,,, is given by the equation

_ X

my pH,’
where X, is the mean mating success of males. The partial derivative of 7, with
respect to X, may be termed the male sexual selection gradient, since it indicates
how much fecundity is affected by mating success. In the present system, the
sexual selection gradient for males, B, is given by the equation

My

Bssm = PH. (12a)

~In females, the partial derivative of fecundity with respect to mating success
is undefined at the bend shown in figure 4 (curve a), so it is convenient to view
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the sexual selection gradient as the regression of fecundity on mating success.
We find that the covariance for all females (mated and unmated) is (q/p)m;Xs,
where g is the proportion of females capable of breeding that do not mate (g =
1 — p); x;is the average mating success of all females capable of breeding (mated
and unmated). The sexual selection gradient for females, B, is then given by
the equation

qmeXy

2
DOxt

B ssf = ’ ( 1 2b)

where o2, is the variance of female mating success for all females (including the
zero class with no mates). Thus, mating failure is a primary cause of sexual
selection on females in a mating system with no nuptial gifts and no paternal care
of offspring. In such a mating system, sexual selection on females vanishes (B¢
= 0) when all females capable of breeding succeed in mating. The other proximate
cause of sexual selection on females is the variance of mate number. The variance
of the mating success of females diminishes sexual selection on females when
there are no nuptial gifts or paternal care.

An inverse relationship between sexual selection and the variance of mating
success may seem paradoxical. Indeed, we might consider the relative variance
of female mating success (o2 ;/X?) to represent the opportunity for sexual selection
in females (Houck et al. 1985). However, sexual selection on any female trait is
constrained by the relationship shown in figure 4 within the limits set by the
opportunity for sexual selection. The average slope of the relationship between
female fecundity and mating success decreases with increasing variance of female
mating success. This effect of variance of mating success evidently places a
tighter limit on sexual selection in females than does the opportunity for sexual
selection.

An examination of some special cases suggests that the sexual selection gradi-
ent of males will generally be greater than the female gradient in this simple
mating system. For example, if all females mate (¢ = 0), the sexual selection
gradient of males will always be greater than the female gradient because B,
= my/H, and B¢ = 0. When some females fail to mate but no female mates
more than once, the sexual selection gradients of males and females are identical
(mg¢/p) because X; = p, o2y = pq, and H, = 1. As a third case, consider the
gradients of males and females when some females fail to mate, those that do
mate may mate more than once, and female mating success follows a Poisson
distribution (o2 = ¥;). Under these conditions By s = g /p and By, is given
by equation (12a). Because the arithmetic mean is greater than the harmonic
mean, X¢/p > H,, where X/p is the arithmetic mean mating success of females
with one or more mates. Consequently we find that a sufficient condition for the
male sexual selection gradient to exceed the female gradient is (p/q) > X;, where
p/q is the odds that a female in the population will mate at least once. This
condition is bound to hold so long as the odds that a female mates are greater
than one (p > 0.5) and females do not show a strong tendency for multiple mating.
For example, if 80% of the females mate at least once (p = 0.8), the odds of
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mating are four. For our condition to fail, the average female would have to have
four or more mates. ‘

Nuptial gifts.—In a variety of animals the female’s fecundity is enhanced by
materials received from her mate. The female may feed on a prey item presented
to her by the copulating male, feed on a portion of the spermatophore, metabolize
seminal fluid, or consume the male himself (Thornhill 1976; Thornhill and Alcock
1983; Gwynne 1991). We will consider all such copulatory contributions to female
fecundity as nuptial gifts.

The effect of nuptial gifts on the sexual selection gradients of the two sexes
can be readily evaluated in a simplified scheme in which the female’s expected
fecundity is zero if she fails to mate, is 7y if she gets one mate, and thereafter
increases by an amount kmy; with each additional mate (fig. 4, curve b). The
variable k ranges between zero and one. For example, if £k = 0.2, the effect of
each nuptial gift is to increase the female’s clutch size by 20%. We assume that
there is no covariance between the size of the nuptial gifts a female receives and
her mating success. Using the relationship m; = mu[(1 — k)p + kX¢], we find
that the covariance between fecundity and mating success for all females (mated
and unmated) is mg[(1 — k)g%; + kolgl. So the sexual selection gradient for
females is given by the equation

_ mgl(1 = k) gX + kol

Bssr = > . (13)
O x-f

The sexual selection gradient for males is given by equation (12a).

The addition of nuptial gifts to a mating system will increase the intensity of
sexual selection on females. Consider mating systems in which all females mate.
In the absence of nuptial gifts there is no sexual selection on females (eq. [12b]
with g = 0), but with nuptial gifts the sexual selection gradient on females is
kmyg, (eq. [13] with g = 0). The greater the effect of the nuptial gift on female
fecundity, the stronger the sexual selection acting on females.

Although the addition of nuptial gifts to a mating system will increase sexual
selection on females, it appears that males will nevertheless experience stronger
sexual selection. If we consider the same three special cases that we considered
in a mating system that lacks nuptial gifts, we find that sexual selection on males
exceeds sexual selection on females under the same sets of conditions. Thus,
when all females mate (g = 0), we find that the male sexual selection gradient is
always greater than the female gradient. When females mate no more than once,
the sexual selection gradients of males and females take the same value, my;.
Finally, when female mating success is Poisson distributed, a sufficient condition
for the male gradient to exceed the female gradient is (p/q) > X;, which is easily
satisfied. In summary, although we have shown that females will sometimes expe-
rience weaker sexual selection than males in a system with nuptial gifts, we have
not shown that females always experience weaker sexual selection. It remains to
be shown whether plausible circumstances exist under which females experience
stronger sexual selection than males. Nevertheless, it is easy to show that females
can experience substantial sexual selection and perhaps this demonstration is the
more important message for empirical studies.
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Parental investment.—In the preceding section we considered male contribu-
tions that increased female fecundity. We now turn to parental care and its cost
to the parent’s subsequent fecundity. Trivers (1972, p. 139) made the provocative
suggestion that parental care could be measured by its negative impact on the
subsequent reproduction of the parents. He defined parental investment as ‘‘any
investment by the parent in an individual offspring that increases the offspring’s
chance of surviving . . . at the cost of the parent’s ability to invest in other
offspring.’”” We can capture the essential feature of parental investment by consid-
ering the sizes of successive broods produced by a female. In a mating system
with maternal investment, the female parent invests in her current brood at the
cost of reducing the size of her next brood. If males invest, their successive
broods would be reduced by a characteristic amount. We can use this character-
ization to assess the impact of parental investment on sexual selection.

Let the size of the female’s n + 1th brood be less than the size of the nth brood
by an amount equal to b; (our measure of maternal investment) times the size of
the nth brood: m;,,, = m;, — by, Where 0 < b; < 1. For example, when b,
= 0.2, successive broods are reduced in size by 20%. Suppose too that each
brood is sired by a different mate. The number of progeny in the nth brood (sired
by the nth mate) is a binomial series equal to 7, (1 — by)"~ ! for n = 1. The total
number of progeny expected from all » mates is the nth partial sum of a geometric
series:
mg (1 = cf)

bf ’
where ¢; = 1 — b;. The expected progeny number converges on a limit equal to
me /by with increasing number of mates, since 0 < ¢; < 1. For example, if the
number of offspring expected from the first mate is m;; = 10 and parental invest-
ment b; = 0.2, then even a female mating with an infinite number of males could
have a total of no more than 50 progeny. The family of curves relating fecundity
to mating success is shown in figure 5a for the case in which a single mating
yields 10 offspring, that is, m; = 10.

We can solve for the female sexual selection gradient by taking the partial
derivative of expected fecundity with respect to average mating success, using
equation (14), equating n with X;, and noting that cft = ee*t

i, = (14)

mge citln cq
Best = - (15a)
f

From this equation we can conclude that increasing maternal investment and
higher average mating success by females both reduce the intensity of sexual
selection on females. Notice in figure 5a that the curves are generally flatter with
increasing parental investment (larger ) and with increasing mating success. An
equation analogous to equation (14) holds for males if we assume that a male
sires all offspring in a brood. If we also assume that each brood is produced by
a different female,

Mg cimin ¢y

Bss-m - _bm s (15b)
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Fig. 5.—Effect of parental investment on relationships between fecundity and mating
success. Expected fecundity is plotted as a function of average mating success. Each brood
is produced with a different mate. In all cases, the number of offspring in the first brood is
10 (mg = 10). a, Fecundity as a function of mating success when successive broods are
reduced by 10%, 20%, 40%, and 80% (b = 0.1, 0.2, 0.4, and 0.8). b, Fecundity as a function
of mating success for a case in which males invest less in offspring than females. Males
experience a 40% reduction in the size of successive broods (b,, = 0.4) but females experi-
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with b, and ¢, possibly taking different values than the corresponding variables
in females. As in females, increasing parental investment and higher average
mating success reduce the sexual selection gradient.

The sex that invests less in offspring will experience stronger sexual selection.
This result is illustrated in figure 56 and ¢ for a case in which males invest less
than females. Notice that the bivariate male and female means for fecundity and
mating success must lie on a line that passes through the origin. This constraint
arises because the total fecundity of one sex must equal the total fecundity of the
other sex owing to the fact that each offspring has one mother and one father.
Likewise, the total number of mates that bear the progeny of one sex must equal
the total number of mates of the other sex (consider row and column totals in
our parental table). Consequently, if we define the breeding sex ratio, BSR, as
the ratio of breeding males to females, then X; = BSR X, and m; = BSR m,.
Thus, BSR constitutes a constraint that determines the positions of the male and
female means on their respective curves for fecundity versus mating success.
The position of the mean in turn specifies the sexual selection gradient for each
sex (fig. 5b), which is the slope of the curve evaluated at the mean. Notice in
figures 56 and c that the slope is always greater for males than for females. In
other words, in a case in which the male invests less in offspring, the male sex
always experiences a stronger sexual selection gradient than the female sex.
When we reverse the sexual labels, we find that females experience stronger
sexual selection than males if they invest less in offspring than males (fig. 6).

In the general case, under the constraint from equation (14) that

XX = (1 — i) b, /(1 — cim) by,

the sexual selection gradient for males is always greater than the sexual selection
gradient for females when females invest more than males (b; > b,,). A proof
by T. Nagylaki of this inequality is given in Appendix B. Likewise, the sexual
selection gradient for females is always greater than the sexual selection gradient
for males when males invest more than females (b, > b;). When males and
females invest equally (b; = b)), X; = X, and it is easy to show that the sexual
selection gradients are equal for the two sexes.

Our result that the sex with less parental investment experiences stronger sex-
ual selection should be viewed with some caution despite its resemblance to
Trivers’s (1972) conclusions. In particular, we have assumed that successive
broods are produced with different mating partners and that mixed paternity
does not prevail within broods. The dependence of our main results on those
assumptions needs to be established.

The relationship of BSR to sexual selection deserves additional comment.
When males invest less than females in offspring, both sexes experience stronger

ence an 80% reduction (b; = 0.8). Male and female means (dots) are constrained to lie at
the intersections of the curves with a line through the origin. Three cases are shown, corre-
sponding to three different breeding sex ratios. ¢, Fecundity as a function of mating success
for a case in which males invest less in offspring than females (b, = 0.4, b; = 0.8), showing
expected fecundity when average mating success ranges from zero to two.
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Fic. 6.—Relationships between fecundity and mating success for a case in which females
invest less in offspring than males (b; = 0.4, b, = 0.8). Conventions are as in figure 5.

sexual selection (i.e., steeper sexual selection gradients) with increasingly male-
biased BSR (fig. 5b, ¢). But, when females invest less than males, both sexes
experience stronger sexual selection with increasingly female-biased BSR (fig. 6).

Determinants of Mating Success

In the preceding section we focused on how mating success affects the fecun-
dity of males and females. We now move upstream from mating success (to the
left in fig. 1) and ask how various traits affect mating success, with an emphasis
on males. We will proceed by constructing models of mating systems so that we
specify the relationship between average mating success and trait averages. We
can then solve for the partial derivative of average mating success with respect
to the average value of a trait. We will refer to such partial derivatives as sexual
selection gradients for the traits in question. The product of such a sexual selec-
tion gradient for a particular male trait (e.g., By, Which denotes the sexual
selection gradient for mate-handling rate, #) and the male selection gradient that
characterizes the mating system (B, ) vields the force of sexual selection acting
on the trait. As before, we will concentrate on selection acting in a particular
breeding season.

An encounter rate approach.—Parker (1978), Baylis (1981), and Sutherland
(1985a) have argued that the essential difference between the sexes lies in rates
of mate encounter and handling. Sutherland (19854, 1985b) adapted models from
renewal theory (Cox 1962) to characterize the two sexes. We extend Sutherland’s
approach by incorporating variation in mate handling time and sexual persuasion,
as well as variation in time between encounters, and by relating the results to
selection theory. By persuasion we mean the probability of mating given encoun-
ter. Our variables are summarized in Appendix C.

The following model applies best to mating systems that consist only of finding
and processing mates. The model could be applied to systems of female-defense
polygyny, competitive-mate-search polygyny, and scramble-competition pclyg-
yny (Thornhill and Alcock 1983; Duvall et al. 1991). Territorial systems may not
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be well described by the model, which assumes statistical independence of
searching and handling.

Consider a mating system in which males search for mates, attend to the sexual
partners they encounter, and then renew their search. We will refer to the interval
of time spent searching for successive mates as ‘‘search time’’ and the interval
of time spent consorting with, courting, mating, and guarding each mate as the
“handling time.”’ Handling is not synonymous with mating, because some frac-
tion of the potential mates that a male courts, consorts with, and so on, will not
mate with him. The entire breeding season lasts some length of time, L, and
throughout this interval each male spends all his time either searching for or
handling mates. Although we assume that each male’s searching and handling is
not complicated by fighting or other interactions among males, male-male compe-
tition can also be considered with the present framework (Duvall et al. 1991).
Suppose that male search time, s, has an arbitrary statistical distribution with
mean «, and variance o2, and that handling time, %, has an arbitrary but indepen-
dent distribution with mean «, and variance o?. The average time spent on a
potential mate, called mate-cycling time, is « = o, + «,. The variance of mate
cycling time is o2 = o? + o2. During the breeding season the average male will
encounter and handle L/a mates, but not all of these potential sexual partners
will mate. Suppose that on the average a proportion, «,, of the encountered and
handled partners actually mate. According to some results from Cox (1962), the
expected mating success of a male during a breeding season of length L is

¥n=a,Lla. (16)

Sutherland (1985a) used a special case of these results in which he assumed a
Poisson distribution of search time, no variation in handling time and persuasion,
and absolute certainty of mating given encounter (a, = 1).

Selection gradients for search and handling times, and persuasion.—Taking
the partial derivatives of expected male mating success with respect to average
search time and average handling time, we find that the sexual selection gradients
for search time, B, and handling time, B, are given by the equation

Bss-s = Bss-h = —OLPL/Olz. (17a)

Likewise, the sexual selection gradient for mate-cycling time, B, iS given by
equation (17a). Thus, sexual selection favors shorter search and handling times.
Selection is strongest on search, handling, and cycling times when the mating
season is much longer than the average mate cycling time, L > «, and when a
high proportion of encountered males are persuaded to mate. Similarly, the sexual
selection gradient for the persuasion trait, B, is given by the equation

Bssp = L. (17b)

Likewise, the sexual selection gradients for L and L/a can be obtained by taking
first derivatives according to equation (16).

We can use the preceding encounter rate model to evaluate the variance of
male mating success. Noting from Cox (1962) that the variance of the number of
mates cycled per season is o>L/a? and using the delta technique (Bulmer 1979,
p. 79) to account for the contribution of the variance of persuasion, we find that
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the variance of mating success is

2L2
[ IR A

p

assuming statistical independence between cycling time and persuasion.

If we divide equation (18a) by the square of mean mating success (a,L/a), we
obtain the variance of relative mating success, I, (standardized to a mean of
one), which is a useful index of the opportunity for sexual selection (Crow 1958;
Wade and Arnold 1980; Arnold 1986):

I, = (&II) o’ + (aiz) ol (18b)

p

Thus, the opportunity for sexual selection is increased by a large variance of
cycling time (arising from the variance of search and handling times) and persua-
sion, by a short average cycling time («,), a short breeding season, and low
average persuasive ability («). Notice that the effects of short cycling time and a
short breeding season are to enhance the contribution of the variance of cycling
time to the opportunity for sexual selection, whereas the effect of low average
persuasion is to enhance the contribution of the variance of persuasive ability.
If we define the relative variance of the number of mates cycled to be the ratio
of absolute variance of the number of mates cycled to the squared mean number
of cycled mates (I, = o?/aL) and define the relative variance of persuasion, I e
according to the equation I, = o2/a2, then we can rewrite equation (18b) as

ILn=1.+1,. (18c)

Thus, the opportunity for sexual selection is simply the sum of selection opportu-
nities arising from the mate-cycling and persuasion processes.

Covariance between the number of mates cycled in a season and persuasive
ability is easily included in the above results. This covariance is likely to be
positive (e.g., large males cycle more mates and also have higher persuasive
ability), but negative covariance (denoting a phenotypic trade-off) is also conceiv-
able. If we relax the assumption of zero covariance, equation (16) is approxi-
mately correct, as are equations (18) with the addition of a covariance term. The
effect is to add a factor of 2a/La,) o, inside the large brackets on the right side
of equation (182) and to the right sides of equations (18b) and (18c), where o,
denotes the covariance between the number of mates cycled and persuasive abil-
ity. Thus, positive covariance increases the opportunity for sexual selection (by
enhancing the variance of mating success), whereas negative covariance de-
creases the selection opportunity.

DISCUSSION

Toward a General Theory of Mating Systems

Emlen and Oring (1977) have provided the most influential contribution to
contemporary thinking about the evolution of mating systems. They viewed the
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degree to which mates could be monopolized as the primary proximate determi-
nate of the mating system and sought to explain monopolization in terms of the
spatial distribution of resources and the temporal availability of mates. The ele-
ments in their scheme (operational sex ratio [OSR], environmental potential for
polygyny, variance of reproductive success, intensity of sexual selection, and
parental investment) continue to dominate discussions of mating systems. While
most workers have continued to operate in the conceptual framework provided
by Emlen and Oring, reliance on their framework is not without its frustrations:
some key variables are undefined (e.g., intensity of sexual selection and environ-
mental potential for polygamy) and verbal arguments unsupported by formal the-
ory are used to draw connections between variables. This lack of support can
create a false or inaccurate sense of connection between theory, hypothesis, and
predictions. Consequently, it has been difficult to translate the Emlen and Oring
framework into a program of precise field research and to test the veracity of
their arguments. For example, most workers are convinced that the operational
sex ratio and parental investment are key features of mating systems, but how
can we evaluate their relative contributions? Thus, a primary contribution of the
present article is to define key variables, so that they can be both measured and
evaluated, and to seek interconnections between variables using a formal theory
for the operation of sexual selection. The looseness of Emlen and Oring’s (1977)
framework means that some of their conclusions may not stand up to more de-
tailed scrutiny. The claim of a pivotal role for the operational sex ratio is a case
in point. ‘“To understand the intensity of sexual selection it is not the overall
population ratio of males to females that is of importance but rather . . . the
operational sex ratio’’ (Emlen and Oring 1977, p. 216). Despite its accessibility
in field studies, OSR may not be the most useful characterization of sex ratio in
the analysis of mating systems. In a simulation study, Ims (1988) found that OSR
was a poor predictor of the variance of male mating success in systems with mate
searching and guarding. In our characterization of sexual selection, it is the BSR,
rather than OSR, that plays a key role. The importance of BSR is that it consti-
tutes a constraint on the means of mating success in males and females and so
constrains the magnitude of sexual selection gradients. The importance of OSR
may lie in its connections to BSR. Those connections need to be determined as
well as the formal relationship between OSR and sexual selection.

The present contribution is less successful in responding to the central chal-
lenge posed by Emlen and Oring (1977): predicting the form of the mating system
from the spatial and temporal distribution of resources. The key question is how
these ecological distributions affect the patterns of encounter between males and
females (see, e.g., Vehrencamp and Bradbury 1984). We have explored some
patterns of mate encounter and evaluated the importance of persuasion, but we
have not tied those encounter rate models to the statistics of resource dispersion.
Simulation models (e.g., Ims 1988; Duvall et al. 1991) represent a start in this
direction, however. Another promising approach, which seems not to have been
explored, would be to assess the impact of ecological factors, such as resource
availability and dispersion, on relationships between fecundity and mating suc-
cess and hence on sexual selection gradients.
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Which Sex Competes for the Other?

This question has been answered by pointing to the size of gametes in males
and females, or to sexual differences in parental investment, gamete cycling time,
or variance of mating success (Bateman 1948; Williams 1966; Trivers 1972; Baylis
1981; Thornhill 1986; Gwynne 1991). But, before we seek an answer, we must
ask what we mean by one sex competing for the other. We take this as a question
that asks, Which sex experiences the strongest sexual selection? Phrased in
these terms, the issue is the proximate one of characterizing sexual selection in
prevailing mating systems, rather than the ultimate issue of phylogenetic origins
of sex differences. The popular message from Bateman’s (1948) article deals with
the ultimate issue (differences in sex role reflect differences in gamete size), but
perhaps the more useful message in this article deals with the proximate issue
of which sex experiences stronger sexual selection. Bateman’s (1948, p. 367)
neglected argument was that males are inherently subject to stronger selection
than females because of ‘‘the greater dependence of the fertility of males on
frequency of insemination.”” A major goal of the present article is to relate Bate-
man’s argument to formal selection theory. We show that the dependence of
fecundity on mating success represents the force of selection on mating success
and also the final common path for sexual selection on any trait. We call this
final common path the sexual selection gradient. Males will experience stronger
sexual selection than females when their sexual selection gradient is steeper.
Males will compete for females when their sexual selection gradient is steeper,
because male traits that influence competition for mates will have a greater impact
on fecundity than comparable traits in females.

Trivers (1972) portrayed the sexual differences in the costs of parental invest-
ment by plotting parental investment as a function of the number of offspring
produced. This portrayal does little to illuminate his argument. Furthermore, this
visualization is not easily translated into a program of quantitative field research,
and conceptual connections to sexual selection are a few steps removed from the
plot (but see Thornhill 1986; Gwynne 1991). A more revealing portrayal of the
costs of parental investment is obtained by plotting the number of offspring pro-
duced as a function of mating success (fig. 5). With this plot, Trivers’s argument
becomes clear and connections to Bateman’s (1948) contribution are transparent.
Furthermore, the plot has a straightforward connection to sexual selection theory.
The cost of parental investment is that successive clutches are progressively
smaller in size. When parental resources are limited, investment in the present
clutch reduces the parent’s ability to invest in the next clutch and consequently
it is smaller in size. The negative effect of parental investment is to pull down
expected total fecundity as the average number of mates is increased. (The benefit
of parental investment is an increase in offspring survival.) Because of this nega-
tive effect, the sex that invests less in offspring will experience stronger sexual
selection (i.e., a steeper sexual selection gradient).

Mating System Characterized by Relationships between Fecundity and
Mating Success
We can characterize mating systems on the basis of the relationship between
fecundity and mating success in males and females. The relationship might be
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Fic. 7.—Expected associations between the type of mating system and the relationships
between fecundity and mating success of males and females.

increasing or asymptotic (fig. 7) in either sex. For example, fecundity might be
an increasing function of mating success in both sexes (see, e.g., fig. 7a). In this
case, we might expect a polygamous mating system in which the average male
has multiple mates and so does the average female. Alternatively, in both sexes
fecundity might reach an asymptote with one mating (fig. 7d). In this case, there is
no advantage to additional matings after the first, and so we expect a monogamous
mating system. Two final cases arise when one sex shows a steadily increasing
association between fecundity and mating success while the other sex shows an
asymptotic relationship. If the male function is increasing while the female func-
tion is asymptotic, we expect a polygynous mating system (fig. 7¢). If the male
function is asymptotic while the female function is increasing, we expect a polyan-
drous mating system (fig. 7b). In fact, Ridley (1988) has discovered a striking
tendency for female fecundity to increase with mating success in polyandrous
insects but has found no such tendency in monogamous insects.

The relationships between fecundity and mating success also enable us to de-
cide which sex will experience the strongest sexual selection. When the curves
are identical for males and females (fig. 7a, d), both sexes will experience the
same strength of sexual selection (i.e., identical sexual selection gradients). If the
curve of fecundity versus mating success of one sex is always steeper than
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the curve of the other sex, that sex will experience stronger sexual selection. If
the mating system is polyandrous, with curves like those in figure 7b, females
will experience stronger sexual selection than males. If the mating system is
polygynous, with curves like those in figure 7¢, males will experience stronger
sexual selection. When both sexes show parental investment, the sex that invests
less will experience stronger sexual selection (figs. 5 and 6).

Variance of Mating Success and Reproductive Success

A sexual difference in the variance of mating success is best viewed as a sign
of sexual selection (Bateman 1948). It is not an infallible diagnostic of the mating
system. Sutherland (1985a) argued that chance alone could produce a larger mat-
ing success variance in males if males had a shorter average mate-handling time.
We have extended Sutherland’s encounter rate approach by permitting variation
in mate-handling time (time devoted to the act of mating, mate guarding, etc.)
and in persuasion (the probability of successful mating given an encounter). Using
this more general model, we show that the contribution of random processes to
the variance of male mating success may be important or trivial depending on
the importance of the deterministic processes of mate handling and persuasion.
The utility of the variance of mating success as a measure of the opportunity for
sexual selection on males (Wade 1979; Wade and Arnold 1980; Arnold and Wade
1984) depends on whether it reflects intrinsic differences among males in mating
success (arising, e.g., from differences in handling time and persuasion). Fitting
a Poisson or binomial distribution to data on mating success (Sutherland 1985a)
is a weak way to exclude the possibility of intrinsic differences, for intrinsic
differences might be Poisson or binomially distributed. A more useful approach
is to test for the contribution of intrinsic differences among males by comparing
the among- and within-male variances of mating success (Houck et al. 1985).

Sutherland (1985b) has proposed a variety of measures of sexual selection
based on the parameters in an encounter rate model. These measures are of
limited usefulness, however, because they are based on the unlikely supposition
that males do not differ intrinsically in mate-handling time or persuasive ability.

In this article we have focused on the relationship between fecundity and mat-
ing success in males and females and only secondarily on the sexual difference
in mating success or fecundity variation. When we plot fecundity as a function
of mating success, the two marginal distributions portray variation in fecundity
and mating success. The two distributions are tied together by the relationship
of fecundity and mating success. Variation in mating success and fecundity in
the two sexes are revealing aspects of the mating system (Wade and Arnold 1980;
Clutton-Brock 1983, 1988), but the relationships of fecundity and mating success
are more fundamentally important because of their more direct relationship to
the action of sexual selection.

Age and Season Effects on Selection

Our consideration of sexual selection in relation to demography (eqq. [5]-[11]),
enables us to evaluate the merits and limitations of various actual data sets. As
a first case, suppose we have data on various traits, mating success, and fecundity
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for each individual in our sample. We have these data for only a single breeding
season, but we know the age of each individual. With such data we can estimate
selection gradients for each age class (within each sex). We can also test for the
heterogeneity of these multiple regression slopes across ages by ANCOVA. If
we find evidence of homogeneity of slopes, we can pool data across ages and
estimate a common selection gradient.

As a second case, we can imagine a similar data set in which ages are unknown.
Most data sets are of this kind. In this case we cannot test for age-specific differ-
ences in selection. We can ignore age and estimate selection gradients, but these
gradients may not be characteristic of any particular age. We also have no way
of evaluating their relationship to lifetime selection.

As a third case, we can imagine following a cohort throughout life, over a
succession of breeding seasons, and scoring the attributes in question (traits,
mating success, fecundity, etc.) in each breeding season. With such data we can
estimate selection gradients for each season and make comparisons across sea-
sons. But, because age is confounded with breeding season, we will not know
whether any changes in selection represent true age effects or season-to-season
changes in the environment. We can, however, estimate lifetime selection on
various attributes by using equation (6) to compute lifetime fitness and equation
(4) to estimate lifetime selection gradients. Furthermore, we could partition that
total selection into age-specific (or season-specific) effects on fecundity and mor-
tality using equation (11). All of these selection estimates, however, may be
characteristic of only the cohort in question and the particular seasonal series of
environments that it encountered. Nevertheless, the evolutionary inferences we
can make are considerably greater than in the first two cases.

As a final and best case, we can imagine following multiple cohorts throughout
their lifetimes. With such data, we could escape from some of the limitations of
the third case. In particular, we could in principle tease apart the effects of age
and season on selection.

Murray (1984) has considered the problem of selection in age-structured popu-
lations in a discussion of the evolution of mating systems. Murray follows Fisher’s
(1958) approach of assigning a fixed Malthusian parameter to each phenotypic
class. The problem with this approach is that a phenotypic class cannot have a
fixed per capita birth rate and death rate when the genotypic and hence pheno-
typic composition of the population is changing under selection (Charlesworth
1980). The approach adopted in this article follows Charlesworth (1980) and Lande
(1982) in making the Malthusian parameter (r) a property of the whole population
rather than an attribute of individual phenotypic classes or genotypes. Further-
more, Murray (1984) represents selection by taking the ratio of lifetime progeny
production for two phenotypic classes. We see, however, from Lande’s (1982)
results, that we need to weight the contribution of progeny produced at each age
by the growth rate of the population and its generation time (eqq. [6]-[7]). Even
when this more exact expression for the fitness of each phenotypic class is used,
simple ratios of fitness do not describe the impact of selection on a trait. That
description is better accomplished with partial regression (eq. [2]). These and
other technical problems make Murray’s (1984) conclusions difficult to evaluate.
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SUMMARY

1. Selection on quantitative traits can be represented by a multiple regression
equation and visualized as a path diagram with paths connecting the traits to
lifetime fitness. The paths in figures 1 and 2 can be estimated in actual populations
as partial regression slopes.

2. The statistical relationship between mating success and fecundity in a partic-
ular breeding season is a key aspect of the mating system. We refer to the partial
regression slope that characterizes the relationship between fecundity and mating
success as the sexual selection gradient. Differences between males and females
in sexual selection gradients provide important insights into mating systems.

3. In the absence of nuptial gifts and paternal care of offspring, males generally
will experience stronger sexual selection than females because their sexual selec-
tion gradient is steeper.

4. Nuptial gifts provided to a female by a male constitute a premium on female
mating success. The addition of such gifts to a mating system steepens the sexual
selection gradient for females. Consequently, both sexes may experience strong
sexual selection.

5. Parental care may depress the size of successive broods produced within a
season. Such parental investment may reduce the premium on mating success in
one or both sexes. As a consequence, the sex that invests less in offspring will
experience stronger sexual selection.

6. Encounter rate models can be used to evaluate the strength of sexual selec-
tion on male traits, as well as to evaluate the stochastic aspect of mating success.

7. From the standpoint of evaluating the strength of sexual selection, the breed-
ing sex ratio is a more revealing aspect of mating systems than is the operational
sex ratio.

8. A conceptual framework couched in terms of sexual selection gradients
explains why one sex competes for the other and can be used to predict the type
of mating system.
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APPENDIX A

TABLE Al

SUMMARY OF VARIABLES USED IN MODELS OF MATE PROVISIONING AND PARENTAL INVESTMENT

Variable Definition

mg Average fecundity of females with one mate

mg Average fecundity of females with one or more mates

my Average fecundity of all females (mated and unmated)

my Average male fecundity (average progeny count for males)

X¢ Average female mating success (number of males that sire the female’s progeny); in-
cludes mated and unmated females

Xn Average male mating success (number of females that bear the male’s progeny); in-
cludes males capable of mating that fail to mate

H, Harmonic mean mating success of females with one or more mates

ols Variance of female mating success for all females (including the zero class with no
mates)

ok Variance of mating success among females with one or more mates

Bssm Male sexual selection gradient

Bess Female sexual selection gradient

q Proportion of females capable of breeding that do not mate

k The effect of a nuptial gift on female fecundity

b Cost of parental investment by females

bn Cost of parental investment by males

Cy 1 - bf

Cn 1 -b,

BSR Breeding sex ratio (ratio of number of breeding males to number of breeding females;
includes the zero fecundity class for each sex)

OSR Operational sex ratio (the average over time of the number of sexually active males

to the number of females capable of insemination)

APPENDIX B

Proor THAT THE SEX THAT INVESTS LESS IN OFFSPRING EXPERIENCES
STRONGER SEXUAL SELECTION

THoMAS NAGYLAKI

Department of Ecology and Evolution, University of Chicago,
1101 East 57th Street, Chicago, Illinois 60637

To simplify the notation, we set ¢ = ¢,,, ¥y = ¢;, @ = X, and a = X;. These parameters
satisfy

0<c,vy<l1l; a,a>0; c>v; (Bla)
and
a (T-y91-0)
_——— Blb
a A== (B1b)
We wish to prove that
¢(1 = y)In(1/¢) > v*(1 — ¢)In(1/y). (B2)

The proof falls naturally into several sections.
First, we reduce inequality (B2) to a much simpler inequality. If we use equation (B1b),
it is easy to show that inequality (B2) is equivalent to

fe) > f(v), (B3a)
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where

X 1
1 —xln)_c’

flx) = (B3b)
and an elementary calculation establishes that f'(x) > 0 for 0 < x < 1. Hence, inequality
(B3a) holds whenever

c>ye. (B4)

Thus, given conditions (B1), the inequalities (B2) and (B4) are equivalent.
Since ¢ > v, inequality (B4) obviously holds if a = a.
If a = 1, equation (B1b) simplifies to

Fiyy=y*—-1+a(l-vy)=0. (BS)

Observe that (i) F(y) = 0 if « = 1 and (ii) F(1) = 0. For 0 < y < 1, the inequality a = 1
implies F'(y) = 0, whence F(y) S 0. Therefore, equation (BS) has no solution in (0, 1)
unless @ = 1. An identical argument demonstrates that « = 1 implies a = 1.

In view of the last two paragraphs, it will suffice to prove inequality (B4) under the
additional restrictions

a>a, a#l, a#l. (B6)

Second, we investigate the existence of sets (a, a, v, ¢) that satisfy conditions (B1) and
(B6). We fix (o, a, ), set

afl—c®
P—;(l_c), (B7)
rewrite equation (B1b) as
g)=y*—-1+p(l-v)=0 (B8)

and study the existence and uniqueness of solutions of equation (B8) in (0, 1). These
solutions, however, may not satisfy ¢ > y. We have

g0 =p—-1, g)=0, (B9a)
gM=ay'-psa-psazl, (BYb)

and
g'(y) =ala— Dy 2z08a=1. (B9¢c)

From observations (B9) we obtain seven cases: () p = a, (i) | <a<p, (li)p <a <1,
iViae<l=sp Vp=1<a,(vil<p<a,and (vi) a < p < 1. We conclude easily
that in cases i to v equation (B8) has no root in (0, 1), whereas in cases vi and vii it has
a unique root in (0, vy,), with

g () =0, v =(p/la)'*"V<1. (B10)

Third, we prove that a > 1 if and only if a > 1. Suppose first that « > 1. Then equation
(B8) has a solution in (0, 1) if and only if 1 < p < a (case vi), which is equivalent to

a”'< G, o<1, (Blla)

where

G(a,c)=‘—7=%<1_ca>. (B11b)
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Noting that G(1, ¢) = 1 and setting A = —1In ¢, we find
a*(l - c)e"“g =1+ Xa—-eM<0; (B12)

inequalities (B11a) and (B12) imply that a > 1.

If a < 1, we must have case vii, so G(a, ¢) > 1, whence a < 1.

Next, we demonstrate that if @ < a < 1, then ¢ < v, that is, equation (B1b) has no
acceptable root. We rewrite equation (B1b) in the form

G(a, ¢) = G(a, ) (B13)
and note that if @ < a, then inequality (B12) and equation (B13) yield
G(a, ¢) > G(a, V), (B14)
which means that it will suffice to establish
9G <0. (B15)
dc
We have
Y(c)=a(l — c)zg =1-ac* '-(1-a)c, (B16)
whence §(1) = 0 and
V') =a(l —a)(l —c)c* 2>0. (B17)

Therefore, U(c) < 0 for 0 < ¢ < 1, which proves inequality (B15).

Finally, we posit that a > o > 1 and validate inequality (B4). We fix o and y and suppress
dependence on them. From the symmetry of equation (B1b) under the interchange (a,
¢) < (o, y) and the uniqueness of the solution of equation (B8), we see that equation (B1b)
defines ¢ = c(a) uniquely. We put

h(a) = [c(@)]* — v (B18)

and observe that c(a) = v is the unique solution of equation (B1b) for a = a. Therefore,
h(a) = 0, and it will suffice to show that 4'(a) > 0.
Differentiating equations (B18) and (B13) leads to

adc
h'(a) = c* (ln c+ ?QE) (B19)
and
SH@ = (1 - actine + 1 - c9), (B20)
c da
where
H(a) = c(1 — ¢*) — ac*(1 — ¢). (B21)

Substituting equations (B20) and (B21) into equation (B19) gives

H(a)h'(a) = ¢c*(1 — ¢ clnc+1—-1¢)>0. (B22)
It remains only to demonstrate that H(a) > 0. We again set A\ = —In ¢ and examine
d@) =M OH(@@) = e — 1 — a(e* — 1) (B23)

in the positive quadrant by fixing A and varying a. We have ¢(1) = 0 and, for a > 1,
b’ (a) = Ner — e + 1
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>\ —Der+1 (B24)
SOA=—DA+1D+1=A>0.
Consequently, ¢(a) > 0, and therefore H(a) > 0.
This completes the proof of inequality (B2).
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APPENDIX C

TABLE C1

SuMMARY OF VARIABLES USED IN ENCOUNTER RATE MODELS

Standardized
Variable Value Mean Variance Variance
Length of season L
Search time s o a?
Handling time h ay ol
Cycling time c a a?
Number of mates cycled Lia Lo¥/o? I,
Persuasion o, ol I,
Male mating success X X oim )
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