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Abstract

With the advent of next-generation sequencing approaches, the search for individual loci 
underlying local adaptation has become a major enterprise in evolutionary biology. One promising 
method to identify such loci is to examine genome-wide patterns of differentiation, using an FST-
outlier approach. The effects of pleiotropy and epistasis on this approach are not yet known. Here, 
we model 2 populations of a sexually reproducing, diploid organism with 2 quantitative traits, 
one of which is involved in local adaptation. We consider genetic architectures with and without 
pleiotropy and epistasis. We also model neutral marker loci on an explicit genetic map as the 2 
populations diverge and apply FST outlier approaches to determine the extent to which quantitative 
trait loci (QTL) are detectable. Our results show, under a wide range of conditions, that only a small 
number of QTL are typically responsible for most of the trait divergence between populations, 
even when inheritance is highly polygenic. We find that the loci making the largest contributions 
to trait divergence tend to be detectable outliers. These loci also make the largest contributions 
to within-population genetic variance. The addition of pleiotropy reduces the extent to which 
quantitative traits can evolve independently but does not reduce the efficacy of outlier scans. The 
addition of epistasis, however, reduces the mean FST values for causative QTL, making these loci 
more difficult, but not impossible, to detect in outlier scans.
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Recent advances in genomics have spurred a search for individual 
loci involved in local adaptation (Stapley et  al. 2010; Feder et  al. 
2012; Hoban et al. 2016; Ahrens et al. 2018). The identification of 
such loci promises to shed additional light on the relationship be-
tween local selection pressures and gene flow in shaping patterns of 
variation across species’ ranges (Hohenlohe et al. 2010; Savolainen 
et  al. 2013). In general, loci involved in adaptation are expected 
to be polymorphic and to display substantial differences in allele 
frequencies across populations. The allele frequency differences are 
caused by selection, driven by spatial variation in the fitness effects 
of individual alleles (Williams 1966; Kawecki and Ebert 2004). In 

other words, a given allele may be adaptive in one environment but 
deleterious in a different environment. Consequently, variation at 
such loci is governed by a balance between migration and selection, 
leading to an expectation that differences in allele frequencies among 
populations should be greater than those expected for neutral loci 
(Cavalli-Sforza 1966; Lewontin and Krakauer 1973).

The search for adaptive loci in nature may be more difficult than 
it initially appears because the phenotypes involved in adaptation 
are often quantitative traits (or complex traits), determined by al-
lelic effects at many loci as well as environmental effects (Falconer 
and Mackay 1996; Brady et al. 2005). Some examples of adaptive 
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single-gene traits have been identified (Kohn et al. 2003; Storz and 
Dubach 2004), but most evidence suggests that polygenic traits are 
the most common targets of adaptive divergence in nature (Pritchard 
et al. 2010; Gagnaire et al. 2013; Sork 2017). This situation is espe-
cially unnerving because genetic variation in complex traits may be 
determined by dozens, hundreds, or thousands of loci spread across 
the genome (Flint and Mackay 2009; Yang et al. 2010; Boyle et al. 
2017). Moreover, the genetic architecture of a typical quantitative 
trait may include substantial nonadditive effects, such as dominance 
and epistasis (Phillips 2008; Hendry 2013; Mackay 2014). These 
considerations point to a need for improved methods to detect adap-
tive loci associated with complex trait variation in nature.

A growing body of work has begun to address the efficacy of 
various approaches to genome-wide scans for adaptive loci in a 
population genomics context (Storz 2005; Pérez-Figueroa et  al. 
2010; Narum and Hess 2011; Vilas et  al. 2012; De Mita et  al. 
2013; Jones et al. 2013; De Villemereuil et al. 2014; Lotterhos and 
Whitlock 2014, 2015; Frichot et al. 2015; Yoder and Tiffin 2017). 
A  common approach is to simulate datasets under various demo-
graphic scenarios and analyze them using a variety of techniques. 
These studies can be extremely illuminating, as they often reveal 
hidden pitfalls and limitations of population genomic methods. For 
instance, a series of articles by Lotterhos and Whitlock (2014, 2015) 
has contributed to a deeper understanding of how scans for outlier 
loci and genotype–environment associations are affected by demo-
graphic factors and sampling schemes (Lottherhos and Whitlock 
2014, 2015). These insights have contributed directly to the develop-
ment of refined methods for the detection of adaptive loci (Whitlock 
and Lotterhos 2015; Verity et al. 2017).

A current limitation of simulation-based studies of the efficacy 
of genome-wide scans is that they use very simple genetic architec-
tures for the traits under consideration. Lotterhos and Whitlock 
(2014, 2015), for instance, assume that selection is applied equally 
to a specified number of loci involved in local adaptation, thus side-
stepping the issue that, in nature, the loci under selection are usu-
ally quantitative trait loci (QTL), with the associated quantitative 
traits serving as the actual targets of selection. Thus, selection on 
individual loci may be more diffuse and variable than the situations 
modeled by Lotterhos and Whitlock (2014, 2015). Other studies 
have modeled more realistic quantitative genetic architectures in the 
context of local adaptation (Vilas et al. 2012), but even these studies 
have not progressed beyond a strictly additive model, even though 
pleiotropy and epistasis are nearly universal features of the genetic 
architecture of all but the simplest of traits (Mackay 2014; Shorter 
et  al. 2015). Furthermore, recent perspectives on the detection of 
loci involved in local adaptation have specifically pinpointed plei-
otropy and epistasis as areas of need for additional work (Hoban 
et al. 2016; Csilléry et al. 2018).

In the present study, we use a simulation-based approach to 
investigate how quantitative genetic architectures that include 
pleiotropy and epistasis affect patterns of differentiation and con-
sequently the efficacy of genome-wide scans for selection based on 
outlier loci. Here, we model the evolution of 2 quantitative traits in 
a pair of populations linked by migration. We examine the extent to 
which pleiotropy and epistasis affect the ability of the populations 
to adapt to their local optima. We also investigate the dynamics of 
differentiation at marker loci and quantitative trait loci arranged 
on explicitly modeled linkage groups. These simulations permit us 
to examine how pleiotropy and epistasis affect the potential for 
genome scans to detect outlier loci associated with trait divergence 
among populations.

Methods

We use an individual-based, forward-in-time simulation to explicitly 
model 2 populations linked by migration. Our simulation is based 
on the multivariate models developed by Jones et al. (2003, 2004, 
2007, 2012, 2014) to study the genetic architecture of quantitative 
traits and the evolution of the mutational matrix in evolving popula-
tions. These models explicitly simulate every individual in a popula-
tion of a diploid organism with separate sexes. For the current study, 
the main additions to the model, which are described in more detail 
below, include an expansion to 2 populations connected by migra-
tion, explicit modeling of linkage groups with recombination and 
neutral marker loci, and the ability to specify loci with and without 
pleiotropic and epistatic effects.

The Genetic System
The simulation model specifies a genome containing neutral marker 
loci and quantitative trait loci affecting 2 quantitative traits. The 
marker loci are arranged on linkage groups, each of which has a speci-
fied recombination rate. In this study, we allow each marker locus to 
have up to 4 alleles, and they are evenly spaced along linkage groups. 
Thus, the markers can be interpreted as resulting from an exon-capture 
approach, a filtered RAD-seq dataset, or any other method that ensures 
a reasonably even representation of markers across the genome. The 
simulation framework can accommodate many thousands of marker 
loci. In the present study, we usually simulate 8000 marker loci on 4 
linkage groups but also consider cases with up to 40 000 loci. A muta-
tion at a marker locus results in a random change to one of the other 
possible allelic states, and all possible changes are equally likely.

We model 2 quantitative traits, determined by a specified number 
of quantitative trait loci (see Table 1 for parameters and symbols). 
The quantitative trait loci are randomly placed on linkage groups, 
and each quantitative trait locus is assumed to be in the immediate 
vicinity of a single marker locus, which may or may not be poly-
morphic during an actual simulation run. In the absence of epistasis, 
an individual’s genetic value for a trait is determined by summing 
across the quantitative trait loci corresponding to the trait in ques-
tion. The model can include loci that affect only trait 1, loci that 
affect only trait 2, and pleiotropic loci that affect both traits. For 
loci affecting a single trait, mutational effects are drawn from a 
normal distribution with a mean of 0 and variance of α11 or α22. For 
pleiotropic loci, which have allelic effects on both traits, mutational 
effects are drawn from a bivariate normal distribution with means 
of 0, variances of α11 and α22, and a covariance of α12. Mutational 
effects are added to the existing allelic effects, adhering to the con-
tinuum-of-alleles model (Crow and Kimura 1964).

We model epistasis using the multilinear model of Hansen and 
Wagner (2001), extended to a multivariate phenotype, as described 
by Jones et al. (2014). Many types of epistasis can be represented 
using the multilinear model, which extends a strictly additive model 
by adding a series of terms corresponding to the effects of interac-
tions among loci. In a strictly additive model, an individual’s geno-
typic value (i.e., breeding value) for a trait is determined by summing 
across alleles and loci (Falconer and Mackay 1996; Lynch and Walsh 
1998). In the univariate multilinear model, an individual’s genotypic 
value (X) for a trait is given by

X = ξ0 +
∑
i

y(i) +
∑
i

∑
j:j>i

ε(i,j)y(i)y( j),

where ξ0 is an arbitrary reference genotype, which we assume to 
be 0, y(i) is the reference effect of an individual’s genotype at locus 
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i, and ε(i, j) is an epistatic coefficient determining the strength of the 
interaction between locus i and locus j. This formulation reduces to a 
simple additive model when all epistatic coefficients are set to 0, and 
the reference effects can then be interpreted as additive effects. In the 
presence of epistasis, reference effects cannot be interpreted simply 
as additive effects because the epistatic terms also contribute to the 
additive genetic variance.

In the presence of multiple traits, the model becomes somewhat 
more complex, because now interactions between allelic effects at 
different traits also become possible (Jones et al. 2014). For instance, 
if we allow universal pleiotropy in a 2-trait system, such that every 
locus has an allelic effect for both traits, then an individual’s geno-
typic value is specified as

aX = aξ0 +
∑
i

ay
(i) +

∑
i

∑
j:j>i

∑
b

∑
c

abcε
(i,j)

by
(i)

cy
( j),

where aX is the individual’s genotypic value for trait a, aξ0 is the trait 
a reference genotype (assumed here to be 0), ay

(i) is the reference effect 
of locus i on trait a, and abcε

(i, j) is the epistatic coefficient describing 
the effects on trait a of the interaction between the locus i reference 
effect on trait b and the locus j reference effect on trait c. No locus 
interacts with itself, so abcε

(i, i)  =  0, and interactions are symmetric, 
such that abcε

(i, j)  =  acbε
(j, i). The multilinear model for nonpleiotropic 

loci, which we also investigate here, is slightly simplified in the sense 
that each locus has a reference effect only on a single trait. However, 
we still allow between-trait epistatic effects. That is, a trait 1 locus 
can interact with a trait 2 locus and produce an effect on either trait.

The multilinear model requires a large number of epistatic 
parameters. The 2-trait, pleiotropic model, for instance, requires a 
total of 4nqP(nqP − 1) epistatic coefficients, where nqP is the number 
of pleiotropic quantitative trait loci. Thus, a model with 2 such loci 
would require only 8 epistatic parameters, whereas a model with 20 
epistatic, pleiotropic quantitative trait loci would require a whop-
ping 1520 epistatic parameters. Given their large number, we draw 
these epistatic parameters from a Gaussian distribution with a mean 
of 0 and a variance of σ2

ε. Thus, larger values of σ2
ε result in larger 

absolute epistatic effects on average, though positive and negative 
epistatic effects are equally likely. These epistatic parameters are 
drawn randomly at the beginning of a simulation run, are identi-
cal in both populations, and remain invariant during the run. Thus, 
epistatic effects in the multilinear model evolve as a consequence of 
the evolution of reference effects, not due to changes in the epistatic 
coefficients.

After each individual’s genotypic values are tallied, we simulate 
environmental variance by adding a random number drawn from a 
Gaussian distribution with mean 0 and variance σ2

Env to the geno-
typic value for each trait to produce a corresponding phenotypic 
value for each trait. Environmental effects are assumed to be inde-
pendent across traits.

The Life Cycle
Our model simulates a population of a diploid, sexually reproducing 
species with separate sexes. The mating system is polygynous. Each 
female chooses a male at random and produces 2B offspring with 

Table 1. Parameters used in the model and their values in the core parameter set

Parameter Symbol Typical 
value

Explanation

Population size N 500 The current number of adults in the population
Carrying capacity K 500 The number of adults is randomly culled to this number before reproduction (but after selection) 

each generation
Female fecundity 2B 4 Number of offspring produced per female
Migration rate m 0.016 The proportion of juveniles in a population that originated from the other population
Sample size S 100 The size of the simulated sample of adults used for genotyping per population
Number of linkage 
groups

nL 4 The number of linkage groups (chromosomes) onto which the marker loci and QTL are placed

Recombination rate per 
linkage group

R 0.25 The expected number of recombination events per linkage group per meiosis during the produc-
tion of gametes

Number of QTL per 
linkage group

nq1, nq2, nqP 1 The number of QTL per linkage group. The QTL fall into 3 categories: those affecting trait 1 (nq1), 
those affecting trait 2 (nq2), and those that are pleiotropic (nqP).

Number of marker loci 
per linkage group

nm 2000 The number of neutral marker loci (e.g., single nucleotide polymorphisms) per linkage group

Marker mutation rate μm 0.0002 The probability per allele per meiosis of a mutation at a marker locus
QTL mutation rate μq 0.0002 The probability per allele per meiosis of a mutation at a QTL
Mutational variances α11, α22 0.2 The variance of the Gaussian distribution (with mean 0) from which new allelic effects are drawn 

for the 2 traits when a mutation occurs. This allelic effect is added to an allele’s existing effect.
Mutational covariance α12 0 The covariance of a bivariate normal distribution (with means 0) from which allelic effects are 

drawn when a mutation occurs at a pleiotropic locus
Environmental variance σ2

Env 1 The variance of the normal distribution, with mean 0, from which environmental effects are 
drawn. These effects are added to an individual’s breeding value to determine the phenotype.

Variance in epistatic 
parameters

σ2
ε 0, 1.6 The variance of the normal distribution, with mean 0, from which epistatic parameters are drawn. 

Larger values result in epistatic parameters with larger absolute effects on average.
Trait optima θ1, θ2 4, −4 The position of the optimum for each trait. Each population has a value of θ1 (the trait 1 opti-

mum) and θ2 (the trait 2 optimum), and these values can differ between populations.
Elements of the  
ω-matrix

ω11, ω22, ω12 49, 49, 0 The ω-matrix specifies the steepness and orientation of the individual selection surface. Lower 
values result in stronger selection (toward the optimum), and ω12 determines the strength of cor-
relational selection.
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him. Males have no limit to the number of times they can mate or 
the number of offspring they can produce.

Markers and quantitative trait loci are explicitly placed on link-
age groups, which can be thought of as chromosomes or regions 
of chromosomes, and recombination events occur during a simu-
lated meiosis. The mean number of recombination events per linkage 
group is determined by the parameter R, and the actual number for 
each chromosome is drawn from a Poisson distribution. Mutations 
are also allowed to occur during this meiosis phase, and their 
effects are described above. For each linkage group, we generate an 
expected number of mutations by drawing a random number from a 
Poisson distribution with a mean equal to the number of loci times 
the mutation rate. We then choose this number of loci at random on 
which to impose a mutation. This approach simply saves computa-
tional time, as testing for mutations on a locus-by-locus basis would 
require thousands of random numbers per generation. The linkage 
groups from the chosen mother and father, after mutation and re-
combination, are united to form a zygote with a full complement of 
diploid loci.

Natural selection is imposed as viability selection during devel-
opment from zygote to adulthood. We use a standard individual se-
lection surface, which has a Gaussian shape, such that an individual’s 
fitness is given by

W(z) = exp
ï
−1
2
(z− θi)

T
ω−1 (z− θi)

ò

where z is a vector of phenotypic values for the traits of interest, θi is 
a vector of trait optima in population i, and ω is a matrix describing 
the selection surface. In the bivariate case, ω is a symmetric matrix 
whose diagonal elements describe the strength of stabilizing selec-
tion on traits 1 and 2, whereas the off-diagonal element describes 
the strength of correlational selection. For the results shown here, 
ω is assumed to be the same in both demes. We generally use val-
ues of 49 for ω11 and ω22, which represents stabilizing selection 
near the weaker end of empirical estimates (Kingsolver et al. 2001). 
Directional selection occurs whenever the population mean is dis-
placed from the optimum. We treat W(z) as the probability that an 
individual survives viability selection by drawing a uniformly dis-
tributed number ranging from 0 to 1. If the random number is less 
than W(z), then the individual survives selection.

The survivors of selection are subject to population regulation. 
We impose a carrying capacity of K. If fewer than K individuals sur-
vive selection, then they are all retained as adults in the population. 
If more than K individuals survive selection, then individuals are 
culled at random until K individuals remain. For most simulations, 
we use a K of 500, and the adult population size typically remains 
at the carrying capacity for the duration of the simulation run. After 
population regulation, we have a new population of adults and the 
lifecycle begins again with random mating.

Migration
In the present study, we simulate 2 populations linked by migration. 
Migration is symmetric and occurs after the production of progeny 
but before natural selection. Hence, juveniles migrate in our model. 
The number of migrants is determined as the product of the migra-
tion rate and the number of progeny present in each population. 
Any fractions are treated as a probability of adding an additional 
migrant. For example, if the expected number of migrants for a given 
generation is 4.3, then the number of migrants would be 4 with 
probability 0.7 and 5 with probability 0.3. These probabilities are 

resolved by drawing a random number from a uniform distribution 
between 0 and 1. Once the number of migrants is determined, the 2 
populations simply exchange this number of individuals.

Running the Simulations
Each simulation run starts with 2 populations of adults, initialized 
with 4 equally frequent alleles at each marker locus. Each quantita-
tive trait locus is also initialized with 4 equally frequent alleles, with 
allelic effects drawn from a Gaussian distribution with a standard 
deviation of 0.05. Initially, markers and quantitative trait loci are 
in complete linkage disequilibrium within a linkage group (so the 
population starts with 4 versions of each linkage group, resulting 
in 10 possible diploid genotypes per linkage group in the initial 
population).

The simulation begins with 10  000 initial generations, during 
which the 2 populations evolve under the same bivariate optimum, 
arbitrarily chosen to be 0 for each trait. During this period, the 2 
populations are linked by mutation, and they achieve a mutation-
drift-migration-selection balance. Linkage disequilibrium also 
breaks down due to recombination. After these initial generations, 
each population’s bivariate optimum is changed to a desired value 
to reflect habitat differences. In most cases, we move only the trait 1 
optima. We choose values of the trait optima that allow substantial 
differentiation without making population persistence unlikely. We 
use a difference of 8 units of trait 1 (i.e., an optimum of 4 in popu-
lation 1 and −4 in population 2), resulting in divergence of more 
than 7 phenotypic standard deviations in the absence of migration. 
In this class of model, the scale is often set by the environmental 
standard deviation (Jones et al. 2003, 2004), which we set at 1 in 
the present study. Thus, 8 units of trait 1 is also 8 environmental 
standard deviations. Investigations involving different positions of 
the optima indicate that these values provide a favorable case for the 
detection of outliers by imposing strong selection on QTL without 
seriously limiting the ability of individuals to survive migration be-
tween populations.

Another 2000 generations are imposed, after the initial stabiliz-
ing selection generations, to allow the populations to equilibrate to 
the new optima. Finally, these generations are followed by 2000 ex-
perimental generations, during which we calculate summary statis-
tics of interest. See Table 1 for a list of important parameters of the 
model and their typical values in simulation runs. Most simulations 
start from this core parameter value set and systematically vary one 
parameter to isolate its effects on the system.

Each combination of parameter values is usually replicated in 
30 independent simulation runs. Each simulation run has a new set 
of starting allelic values, randomly chosen epistatic parameters, and 
locations of the quantitative trait loci on linkage groups.

Calculating Variables of Interest
We calculate a number of variables of interest related to the effi-
cacy of local adaptation and the ability of genome-wide scans to 
detect outlier loci. With respect to quantitative genetic variables, we 
compile data regarding the phenotypic mean, phenotypic variances 
and covariance, total genetic variances and covariance, and additive 
genetic variances and covariance. These values are averaged across 
experimental generations.

We also calculate per-locus values of FST for marker loci and 
quantitative trait loci. These values are calculated from a simulated 
sample of adults drawn from the 2 populations. Typically, we assume 
a sample size of 100 individuals per population. We use the formula 
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FST = (HT − HS)/HT, where HT is the total expected heterozygosity (i.e., 
when populations are lumped) and HS is the mean within-population 
expected heterozygosity. This formula ensures that all FST values are 
positive, which is a necessary prerequisite for our chosen method of 
detecting outliers (Whitlock and Lotterhos 2015), while still being 
highly correlated with more complex formulas for FST estimation.

We take 2 approaches for the detection of FST outliers among 
our marker loci. First, we use the method of Whitlock and Lotterhos 
(2015), which is an implementation of the approach originally sug-
gested by Lewontin and Krakauer (1973). This method is based on 
the observation that, for a given locus, the value

F̂ST(npops − 1)
F̄ST

is expected to have a χ2 distribution with npops − 1 degrees of freedom. 
Whitlock and Lotterhos (2015) improve upon the Lewontin and 
Krakauer (1973) approach by introducing an iterative method to 
estimate the degrees of freedom from the core of the distribution, 
thus reducing the bias introduced by outlier loci. However, our im-
plementation, which requires hard-coding into our simulations, 
assumes npops − 1 = 2 − 1 = 1 degree of freedom. This assumption will 
make our P values slightly less accurate than those that would be 
produced by the Whitlock and Lotterhos (2015) approach.

We supplement the Whitlock and Lotterhos (2015) approach 
for outlier detection by using smoothed FST values and calculat-
ing arbitrary confidence intervals based on the mean and stand-
ard deviations of the smoothed values. We calculate smoothed 
values according to the sliding window approach used by 
Hohenlohe et  al. (2010), where values are weighted according 
to a Gaussian function. We use a variance of 500 marker posi-
tions for this procedure. We then calculate 99% and 95% con-
fidence intervals as F̄ST−smoothed + σF-smoothed × 2.57583 and 
F̄ST−smoothed + σF-smoothed × 1.95996, respectively, where F̄ST−smoothed 
is the mean smoothed FST value for the linkage group and σF-smoothed is 
the standard deviation in smoothed FST values for the linkage group. 
Marker loci with FST values above the critical values were considered 
outliers at either 99% or 95% confidence. These critical values were 
calculated separately for each linkage group, whereas the Whitlock 
and Lotterhos (2015) approach was applied genome-wide.

All tests for outlier loci in this study focus on marker loci, not the 
quantitative trait loci themselves, as we are assuming that the loci 
underlying phenotypic traits are not known. We also restrict atten-
tion to marker loci that are near a smoothed FST peak, for both the 
Whitlock and Lotterhos (2015) and smoothed FST approaches. Even 
though all tests for outliers focus on the marker loci, we do calculate 
FST values for quantitative trait loci for comparison. We conduct our 
outlier tests on the final experimental generation of each simulation 
run.

Results

Evolution of Local Adaptation
As expected, this model produces a migration-selection balance when 
the 2 evolving populations have different optima. In this study, we 
hold the optimum for trait 2 constant at 0, while imposing separate 
trait 1 optima for the 2 populations. Under most circumstances, we 
use a trait 1 optimum of 4 for population 1 and an optimum of −4 
for population 2. In the absence of migration, the difference between 
optima represents about 7 phenotypic standard deviations, which is 
large enough to produce meaningful divergence, without imposing 

too large a cost as the populations evolve from their initial optima 
of 0 to their experimental optima of 4 or −4. Investigation of other 
differences between optima, ranging from 2 to 20, produces similar 
qualitative results to those presented in this report.

Table 2 shows some important results regarding trait means and 
genetic variances when QTL are not pleiotropic, and the trait optima 
are set to 4 in population 1 and −4 in population 2. The top half 
of the table shows results without epistasis (i.e., σ2

ε = 0). When the 
migration rate is 0, of course, the populations independently evolve 
trait means very close to their optima (Table 2, first row). As the 
migration rate increases, each population finds its mean for trait 1 
displaced from the relevant optimum by migration. In the extreme 
case of m  =  0.256, which means that approximately a quarter of 
individuals in each population originated from the other population 
each generation, population means for each population end up very 
close to 0, the midpoint between the 2 optima. Because the positions 
of the population means are determined by a balance between selec-
tion and migration, either weaker selection or a smaller difference in 
optima between the 2 populations would result in population means 
closer to the midpoint in optima between populations.

In the absence of epistasis (Table 2, top half), the genetic vari-
ance for trait 1 is strongly affected by migration (11VG). As the mi-
gration rate increases from 0 to 0.064, we see a 60-fold increase in 
genetic variance (in the absence of epistasis, all of this genetic vari-
ance is additive). This increase is due to the migration of alleles with 
strikingly different average allelic effects from the other population 
(Guillaume and Whitlock 2007; Yeaman and Whitlock 2011). The 
genetic variance for trait 2 (22VG) and the genetic covariance (12VG) 
are only slightly affected by migration. These small effects are prob-
ably due to occasional linkage disequilibrium between QTL for the 
2 traits.

When the migration rate becomes extremely large, we begin to 
see a decrease in the trait 1 genetic variance (Table 2, m = 0.128, 
m = 0.256). This effect occurs because the populations are so well 
mixed that they are beginning to behave as a single panmictic popu-
lation spanning a 2-peaked selection surface. This feature is most 
evident when m  = 0.256. In this case, both population means for 
trait 1 are near 0, and the additive genetic variance is about 20-fold 
lower than it is for m = 0.064. However, the genetic variance is still 
about 3-fold higher than it is in the absence of migration, consistent 
with a population experiencing the disruptive selection that would 
be expected from a 2-peaked selection surface.

In the presence of epistasis (Table 2, bottom half), the evolution 
of local adaptation closely mirrors the patterns seen in the absence 
of epistasis. While some small, quantitative differences are appar-
ent, the overall pattern is similar, and epistasis shows no universal 
tendencies to facilitate or retard local adaptation. Even the total 
genetic variance for trait 1 shows almost the same pattern whether 
or not epistasis is part of the genetic architecture (Table 2, 11VG). 
Interestingly, even with epistasis, almost all of the genetic variance 
for trait 1 is additive genetic variance. This result may stem partially 
from our use of nondirectional epistasis (i.e., a mean of 0 for our dis-
tribution of epistatic parameters), but is also due to large differences 
in reference effects between populations at some loci (see below). 
The most striking difference between genetic architectures with and 
without epistasis concerns the genetic variance of the second trait. 
In the presence of epistasis, we see a larger increase in the genetic 
variance of trait 2 as the genetic variance of trait 1 increases (Table 
2, 22VG), in comparison to genetic architectures lacking epistasis. 
This pattern stems from the epistatic interactions between QTL for 
the 2 traits, which restrict the extent to which the traits can evolve 
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independently. We also see a tendency for the genetic covariances 
to be more variable (cf. the SEM values for 12VG with and without 
epistasis) in the presence of epistasis, another effect that is attribut-
able to the between-trait epistatic interactions. Thus, with epistasis, 
populations sometime evolve genetic covariances that differ more 
from 0 (either in a positive or negative direction) than those that 
evolve without epistasis and pleiotropy.

Table 3 shows results for the evolution of the trait means and 
genetic variances when all QTL are pleiotropic, with and without 
epistasis. Interestingly, nearly all of the patterns observed in the ab-
sence of pleiotropy also occur in the presence of pleiotropy. The only 
notable and expected exception is that with pleiotropy, even in the 
absence of epistasis, factors affecting the genetic variance for trait 1 
also impact the genetic variance for trait 2, as a direct consequence 
of pleiotropy.

Detection of Outlier Loci: Sample Manhattan Plots
In this report, we employ 2 simple methods to detect outlier loci, 
each of which imposes a threshold value of FST, above which a 
marker locus is considered to be an outlier. The first approach is to 
use smoothed FST values, and identify outliers as those that are above 
a 99% confidence limit for their smoothed values (we find that a 
95% confidence limit produces unacceptably high rates of false posi-
tives). The smoothing process changes the expected distribution of 
FST, precluding a strict statistical interpretation of the threshold, so 
this method is necessarily approximate. We also use an approach 
that takes advantage of the observation that an FST value, standard-
ized by the number of populations and the mean FST, has a χ2 distri-
bution. This method assumes linkage equilibrium, and consequently 
is also an approximation for genome-wide marker sets. These con-
siderations apply to any method to identify outliers. As our intent 
here is to examine the effects of pleiotropy and epistasis on the detec-
tion of outliers, rather than to compare methods of outlier detection, 
we have chosen these 2 simple methods, which do reliably identify 
regions of the genome with exceptionally large FST values. For this 
analysis, we apply outlier tests only to the marker loci, assuming 
the QTL genotypes are unknown to the researcher. Thus, a QTL is 
flagged as a significant detection only if nearby marker loci are sig-
nificant outliers.

Figures 1 and 2 show Manhattan plots for sample runs of the 
simulation in the absence of pleiotropy either without (Figure 1) or 
with epistasis (Figure 2). The Manhattan plots are based on a sample 
of individuals from the last generation of the simulation run. All 
outlier tests were applied to this single, final generation of each run. 
Each figure shows results for 3 different migration rates (m = 0.002, 
m  =  0.016, and m  =  0.128). These figures illustrate some general 
patterns that emerge from our in-depth analysis that follows. For 
instance, when migration rates are low, background marker FST val-
ues are so high as to render outlier detection difficult (Figure 1, top 
panel). In contrast, when migration rates become extremely large, 
the populations display so little divergence that all FST values are 
tiny (note the scale in Figure 1, bottom panel). In this case, outliers 
will emerge only if selection is strong enough to produce substantial 
divergence in trait values.

Another pattern apparent in Figure 1 is that the QTL for trait 
1 tend to have elevated FST values, relative to markers, but in many 
cases only 1 or 2 QTL show these elevated values (Figure 1, mid-
dle and bottom). The QTL for trait 2, in contrast, almost univer-
sally exhibit FST values near 0 (Figure 1, blue triangles). Finally, if we 
examine the locations of the yellow stars, which represent smoothed 

outlier peaks, we see that many of the peaks do correspond to trait 
1 QTL. However, spurious peaks also occur, and in some cases, they 
are as convincing as the peaks corresponding to QTL (Figure 1).

Figure 2 shows sample Manhattan plots in the presence of epis-
tasis, and we see that these plots are qualitatively similar to those 
in Figure 1. The main difference, which emerges especially in our 
in-depth analysis below but is also apparent in the top panel of 
Figure 2, is that now QTL for trait 2 also sometimes show elevated 
FST values. Thus, in the presence of epistasis, QTL for trait 1 or trait 2 
can be responsible for the trait 1 divergence that we observe between 
populations. The top panel of Figure 2 also shows how the detection 
of loci likely depends on the choice of smoothing parameters. The 
leftmost QTL, for instance, might be detectable with more smooth-
ing, but at the cost of the regions of detection spanning much larger 
chromosomal segments. Similarly, in the middle panel of Figure 2, 
the single detected QTL (near genomic position 3100) produces 2 
peaks, resulting in 2 apparent detections, but would be reduced to 1 
peak with additional smoothing.

Figure 3 shows sample Manhattan plots for a genetic architecture 
in which all loci are pleiotropic, for a single migration rate (0.016) 
with and without epistasis. With pleiotropy, we see essentially the 
same patterns that we saw without pleiotropy, except now there is 
no distinction between QTL for trait 1 and trait 2.

Detection of Outlier Loci: Effects of Pleiotropy and 
Epistasis
Table 4 compares the results of outlier analyses under different mi-
gration rates in the absence and in the presence of epistasis (without 
pleiotropy). As migration rates increase, we see a substantial drop 
in mean marker FST values, as expected. As a result of selection on 
trait 1, the mean FST for trait 1 QTL is always larger than the mean 
marker FST. This effect occurs with or without epistasis (cf. top and 
bottom of Table 4). We see a different pattern for trait 2 QTL. In the 
absence of epistasis, the QTL for trait 2 have FST values that tend to 
be near (or even below) the values of the marker loci, consistent with 
the lack of divergent selection on these loci. In the presence of epis-
tasis, however, the QTL affecting trait 2 also affect trait 1 through 
epistatic interactions, and we see these effects reflected in FST values 
that are larger than those of the mean marker values.

In the absence of epistasis and pleiotropy (Table 4, top rows), 
we see that the number of QTL correctly detected by outlier analy-
ses depends strongly on the migration rate. With migration rates of 
0, all detections are spurious, because the populations do not even 
share alleles at their QTL. For migration rates above 0, the number 
of detected outlier peaks is remarkably consistent when we use 
smoothed FST values, ranging from 3.8 to 4.8. If we use the Whitlock 
and Lotterhos (2015) method, we see an increase in outlier peak 
detections (from 0 to 9.5) as the migration rate increases (but note 
that we did not use their iterative method to correct the degrees of 
freedom). Regardless of the number of apparent QTL detections 
with either method, the number of true detections (Table 4) reaches 
a maximum of about 2 QTL at a migration rate of 0.008 or 0.016. 
For lower or higher migration rates, the number of true QTL detec-
tions declines. Thus, never do we detect more than about half of the 
4 QTL affecting trait 1 in this favorable scenario with a very simple 
genetic architecture.

When epistasis is included in the model (Table 4, bottom rows), 
our power to detect true outlier loci diminishes. In virtually all 
cases, we detect substantially fewer QTL for trait 1 than in the 
absence of epistasis. We do detect some QTL affecting trait 2 as 
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actual outlier loci, but even taking these into account, we have 
fewer total detections of true QTL under epistasis than in the 
absence of epistasis.

Table 5 shows an analysis similar to that shown in Table 4, but 
with pleiotropy included in the genetic architecture. Interestingly, al-
most the same patterns emerge as we observed in the absence of 
pleiotropy. In particular, the total number of outlier peaks identified 
by each method is similar, and the true QTL detections reach a max-
imum of about 2, with more true positives occurring for intermediate 
migration rates. The addition of epistasis diminishes the number of 
true detections, but the total number of pleiotropic loci correctly 
detected in the presence of epistasis (Table 5) is nearly the same as 
the sum of trait 1 and trait 2 QTL detected for nonpleiotropic loci 
with epistasis (Table 4).

Understanding the QTL
Some additional explanation is necessary to make sense of the pat-
terns we see regarding QTL detection by FST outlier analysis. These 
analyses also reveal that refinement of the method of outlier analysis 

probably would not help much for a 2-population comparison like 
the one we present here.

First, we consider the distribution of FST values for the QTL in our 
study. Figure 4 shows histograms of FST for trait 1 and trait 2 QTL 
for 30 replicates of the simulation under a migration rate of 0.016 
(i.e., a favorable migration rate for outlier detection). Without epis-
tasis (Figure 4, upper left), the distribution of trait 1 QTL FST values 
has a large peak near 0 and a substantial tail stretching out toward a 
value of 0.8. Nearly all of the QTL with FST values above about 0.2 
were detected as outliers. Thus, some trait 1 QTL make no contribu-
tion to population divergence, have low FST values, and would not 
be detected by any FST outlier approach. Another set of QTL appears 
to contribute to population divergence, displays larger FST values, 
and is easily detected by the smoothed FST outlier approach we use in 
the present study. Even under the favorable conditions simulated for 
Figure 4, a third of the QTL for trait 1 have FST values near 0. In the 
absence of epistasis, all QTL for trait 2 have low FST values (Figure 
4, upper right), and none are detected in outlier scans, except for 2 
spurious detections.

Figure 1. Manhattan plots for 3 typical simulation runs, under 3 different migration rates, in the absence of pleiotropy or epistasis. These simulations were run 
using the same parameter values as those used to generate the data in Table 2. Here, we use migration rates of m = 0.002 (top panel), m = 0.016 (middle panel), 
and m = 0.128 (bottom panel). The x axis shows genomic position, measured by the positions of marker loci. We simulated 2000 evenly spaced marker loci per 
linkage group and 4 linkage groups for a total of 8000 loci. Gray dots show the FST values for all marker loci, and the dark line shows smoothed FST values. We 
modeled one QTL for each trait per linkage group. FST values for QTL affecting trait 1 (with locally divergent optima) are shown as red diamonds, whereas FST 
values for QTL affecting trait 2 (with identical optima in both populations) are shown as blue triangles. Yellow stars at the top of each panel indicate smoothed FST 
peaks that were flagged as outliers by the 99% confidence interval method. All values shown here are from the final experimental generation of the simulation 
run (i.e., generation 2000).
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In the presence of epistasis, the distinction between loci that 
do and do not contribute to population divergence is even clearer 
(Figure 4, lower panels). Again, the loci contributing to population 
divergence have values of FST larger than about 0.2 and are readily 
detected in outlier scans. Now, however, two thirds of trait 1 QTL 
have FST values near 0, rendering them undetectable by any method 
that uses an FST outlier approach. We also see that epistasis results in 
a distribution of FST values for trait 2 QTL that is more similar to the 
distribution for trait 1 QTL (Figure 4, bottom right), in comparison 
to the scenario without epistasis (Figure 4, upper vs. lower).

An important question concerns how much the QTL detected by 
outlier scans contribute to population divergence in trait values. This 
issue is addressed by Figure 5, which shows the relationship between 
the between-population difference in mean allelic effect and the FST 
for the QTL depicted in Figure 4. The between-population difference 
in mean allelic effect is calculated on a per-locus basis, as the mean 
genotypic value (both alleles summed within an individual) across 
individuals within population 1 minus the same quantity calculated 
for the same locus in population 2. Thus, loci with larger values make 
larger contributions to the difference in trait means across popula-
tions. For epistatic loci, we use the reference effect, so this between-
population difference could be modified substantially by epistatic 
effects in the actual population. For trait 1 QTL, we see a positive 

relationship (linear regression, P << 0.0001, R2 = 0.81), indicating 
that loci with the most divergent allelic effects also have the most di-
vergent allele frequencies (Figure 5, left panels). This effect occurs re-
gardless of the presence of epistasis (cf. Figure 5, upper left to Figure 
5, lower left; with epistasis: linear regression of FST on absolute mean 
allelic effect difference, P <<< 0.0001, R2 = 0.48). Interestingly, with 
epistasis, we see one outlier with an allelic difference in opposition 
to the trait mean difference between populations. This phenomenon 
stems from negative epistasis, which can change negative reference 
effects into positive contributions to the trait value.

Two other important patterns are shown in Figure 5. First, al-
most all of the loci with large effects on the between-population 
divergence in trait values were detected as outliers in our analysis 
(Figure 5, left panels, red diamonds). Second, the pattern for trait 2 
QTL differs substantially from that for trait 1 QTL. In particular, 
in the absence of epistasis, trait 2 QTL show almost no meaningful 
divergence. However, in the presence of epistasis, trait 2 QTL do 
show divergence, but without the predictable directionality we see 
in trait 1 QTL. This latter result occurs because trait 2 QTL affect 
trait 1 only indirectly through epistatic interactions with trait 1 
loci, whereas trait 1 QTL affect trait 1 directly via reference effects 
and indirectly through interactions with each other and with trait 
2 loci.

Figure 2. Manhattan plots for simulation runs including epistasis (σ2
ε = 1.6) under 3 different migration rates: m = 0.002 (top), m = 0.016 (middle), m = 0.128 

(bottom). Simulation parameters for this figure are identical to those used for Figure 1, with the exception of epistatic parameters. See Figure 1 for an explanation 
of the symbols.
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Figure 3. Manhattan plots, similar to those shown in Figures 1 and 2, the top panel shows a genetic architecture including pleiotropy with no epistasis while 
the bottom panel shows pleiotropy with epistasis (where the epistatic parameter variance is equal to 1.6). Both panels show results from simulations with a 
migration rate of m = 0.016. Symbols and parameter values are described in Figure 1. Now, however, the QTL are shown as purple circles, with one QTL per 
linkage group. As the loci are pleiotropic, each QTL affects both traits.

Table 4. The results of outlier analyses for different migration rates without pleiotropy

m σ2
ε

Mean 
marker FST

Mean 
Trt 1 QTL 

FST

Mean Trt 
2 QTL FST

No. 
Smoothed 

FST Outliers

No. Near 
Trait 1 QTL

No. Near 
Trait 2 QTL

No. W&L 
FST Outliers

No. Near 
Trt 1 QTL

No. Near 
Trt 2 QTL

0 0 0.5842 0.7538 0.7520 1.067 0.033 0.033 0 0 0
0.002 0 0.1450 0.4862 0.1410 3.833 1.467 0.067 0 0 0
0.004 0 0.0874 0.3891 0.0655 4.633 1.667 0.067 1.967 0.500 0.033
0.008 0 0.0502 0.3038 0.0454 4.433 2.000 0.200 4.500 1.633 0.133
0.016 0 0.0292 0.2186 0.0232 4.467 1.900 0.067 5.800 2.000 0.100
0.032 0 0.0157 0.1476 0.0106 4.600 1.667 0.033 6.533 1.600 0.000
0.064 0 0.0076 0.0774 0.0089 4.333 1.700 0.033 7.200 1.767 0.200
0.128 0 0.0039 0.0299 0.0040 4.467 1.633 0.067 9.200 1.500 0.333
0.256 0 0.0025 0.0034 0.0025 4.767 0.233 0.100 9.533 0.333 0.300
0 1.6 0.5820 0.8308 0.8513 1.533 0.000 0.100 0 0 0
0.002 1.6 0.1605 0.3556 0.2788 2.933 0.433 0.333 0 0 0
0.004 1.6 0.0954 0.2915 0.1697 4.100 0.967 0.467 1.333 0.100 0.067
0.008 1.6 0.0569 0.1930 0.1373 4.333 1.033 0.633 3.667 0.567 0.467
0.016 1.6 0.0312 0.1466 0.0985 4.367 0.867 0.667 5.700 0.800 0.567
0.032 1.6 0.0158 0.1124 0.0508 4.367 1.000 0.433 6.667 1.067 0.500
0.064 1.6 0.0081 0.0616 0.0197 4.067 1.067 0.367 7.833 1.033 0.633
0.128 1.6 0.0037 0.0219 0.0079 4.533 0.800 0.300 8.867 0.967 0.433
0.256 1.6 0.0024 0.0033 0.0027 4.533 0.300 0.200 11.300 0.467 0.300

Parameter values are the same as in Table 2. Columns show the migration rate (m), the variance in epistatic parameters (σ2
ε), and mean FST values for marker 

loci (8000 loci total) and QTL affecting trait 1 and trait 2 (4 nonpleiotropic QTL for each trait). The next 3 columns show the number of outlier loci detected as 
smoothed FST peaks outside the 99% confidence interval of smoothed FST values, as well as the number of these peaks that fell within 25 marker loci of a trait 1 
QTL or a trait 2 QTL. The final 3 columns show similar results using the Whitlock and Lotterhos (2015) method for detecting outliers with the degrees of freedom 
assumed to have a value of 1 and α = 0.01 (see Methods). Each entry in this table is a mean from 30 independent simulation runs under the relevant parameter 
combination.
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Figure 6 shows analyses that correspond to those shown in 
Figures 4 and 5 but for pleiotropic loci. The distribution of FST val-
ues for pleiotropic QTL is very similar to that for trait 1 QTL in the 
absence of pleiotropy (Figure 6, top panel; Figure 4, upper left). In 
addition, the relationship between population divergence in allelic 
effects and FST for pleiotropic loci also mirrors that for trait 1 QTL 
(Figure 6, middle panel compared with Figure 5, upper left; with 
pleiotropy: linear regression, P <<< 0.0001, R2  =  0.88). However, 
the relationship between the trait 2 between-population difference 
in allelic effects and FST is quite different, as pleiotropic QTL display 
a wider range of between-population differences in allelic effects 
(relative to nonpleiotropic trait 2 QTL). These differences occur 
whenever a pleiotropic locus with a favorable effect on trait 1 car-
ries a relatively large pleiotropic effect on trait 2 along with it as it 
diverges. However, we see no clear relationship between divergence 
in allelic effects at trait 2 and the value of FST for pleiotropic loci 
(Figure 6, bottom panel).

The relationship between divergence in allelic effects and the 
contribution to within-population genetic variance on a locus-per-
locus basis is addressed in Figure 7. Regardless of the genetic archi-
tecture, loci with the largest divergence among populations in allelic 
effects make the largest contributions to within-population genetic 
variance (Figure 7; linear regressions: no epistasis or pleiotropy: P 
<<< 0.0001, R2 = 0.92, only pleiotropy: P <<< 0.0001, R2 = 0.91, 
only epistasis: P <<< 0.0001, R2  =  0.77). This result makes sense 
because alleles contributing to the difference in trait means between 
populations will tend to have allelic effects that are typical for their 
population of origin but quite different from the alleles segregating 
in the other population. While selection will oppose the migration 
of these alleles, those that do successfully migrate will substantially 
increase the genetic variance for the trait in the recipient population. 
This result also means that the loci making the largest contributions 

to within-population variance in trait values are the most detectable 
in genome-wide scans (because they also contribute to population 
divergence).

In summary, we can draw the following generalizations, re-
gardless of whether the genetic architecture includes epistasis or 
not: QTL with the largest between-population differences in allelic 
effects also have the highest FST values and are the most detectable in 
genome-wide scans for FST outliers. These loci also make the largest 
contribution to within-population genetic variance. Thus, genome-
wide scans for FST outliers associated with local adaptation likely 
detect some, but not all, important QTL, and those that are detected 
will tend to be the loci that make the largest contributions to diver-
gence and within-population genetic variance.

Sensitivity to Assumptions
The results described above seem to be relatively insensitive to 
assumptions regarding parameter values. Obviously, the migra-
tion rate is important, as are the distance between optima and the 
strength of selection. An exploration of other parameter values, how-
ever, reveals some surprising trends, which we discuss here. A subset 
of relevant simulation results is shown in Table 6.

The results shown in Table 6 differ from most of our other results 
in that we now simulate 2 QTL per linkage group (with 4 linkage 
groups) meaning that each trait is determined by 8 QTL. Despite this 
change, the number of outlier peaks (identified by the smoothed FST 
approach) remains near 4 or 5 for almost all parameter combina-
tions, with a maximum mean of 2.4 true QTL detections (Table 6).

For most of our simulations, we use a carrying capacity of 500 
(resulting in an adult population size of 500). We find that the number 
of outlier peaks does not change much with increasing population size, 
but that larger populations are more likely to produce true QTL detec-
tions (Table 6). The detection of peaks is somewhat affected by sample 

Table 5. The results of outlier analyses when all loci are pleiotropic

m σ2
ε

Mean 
marker FST

Mean 
pleiotropic 
QTL FST

No. smoothed 
FST outliers

No. near pleio-
tropic QTL

No. W&L 
FST outliers

No. near pleio-
tropic QTL

0 0 0.5839 0.7894 1.167 0.000 0 0
0.002 0 0.1463 0.4973 3.700 1.667 0 0
0.004 0 0.0907 0.4130 4.300 1.733 1.567 0.300
0.008 0 0.0532 0.3173 4.433 1.933 3.967 1.567
0.016 0 0.0290 0.2188 4.500 1.867 5.633 1.833
0.032 0 0.0152 0.1480 4.500 1.933 6.967 1.867
0.064 0 0.0074 0.0809 4.267 1.567 7.133 1.600
0.128 0 0.0038 0.0285 4.267 1.300 8.833 1.300
0.256 0 0.0025 0.0031 4.633 0.167 9.833 0.267
0 1.6 0.5841 0.9085 1.367 0.033 0 0
0.002 1.6 0.1593 0.4747 3.000 0.733 0.133 0.033
0.004 1.6 0.0972 0.3971 4.633 1.433 1.300 0.100
0.008 1.6 0.0575 0.2955 4.433 1.667 3.467 1.000
0.016 1.6 0.0314 0.2151 4.200 1.567 5.133 1.433
0.032 1.6 0.0159 0.1360 4.300 1.200 6.700 1.467
0.064 1.6 0.0085 0.0831 4.567 1.233 7.633 1.433
0.128 1.6 0.0037 0.0238 4.333 0.933 8.767 1.000
0.256 1.6 0.0023 0.0021 4.567 0.167 10.733 0.333

This table shows the migration rate (m), the variance in epistatic parameters (σ2
ε), mean FST values for markers and QTL, and results of 2 different methods for 

outlier detection. In contrast to the results shown in Table 4, we no longer distinguish between trait 1 and trait 2 loci, because pleiotropic loci affect both traits. 
The last 4 columns show the number of outlier marker loci detected by the 99% confidence interval approach and the Whitlock and Lotterhos (2015) approach. 
In each case, we also show the number of these outlier peaks that fell within 25 marker loci of a QTL on the relevant linkage group.
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size, but detections are still possible with a sample of as few as 10 indi-
viduals per population (Table 6). Intermediate strengths of selection are 
most favorable for the detection of outlier loci, as very weak selection 
produces no population divergence (i.e., the effects of migration swamp 
out the effects of selection) and very strong selection limits migration, 
as migrants die before they can contribute to the gene pool (Table 6).

We also find that the amount of epistasis affects the detection 
of QTL. As the epistatic variance gets larger (Table 6), the number 
of trait 1 QTL detected decreases slightly and the number of trait 
2 QTL detected increases slightly. This pattern should be expected, 
as stronger epistasis increases the potential for trait 2 QTL to drive 
population divergence in trait 1 means.

The number of marker loci per linkage group greatly affects the 
number of identified outlier peaks (Table 6). A very small number of 
loci (500 per linkage group), results in fewer peaks and fewer detec-
tions. A  large number of loci (10  000 per linkage group), greatly 
increases the number of false positives without substantially increas-
ing the number of true QTL detections.

Oddly enough, increasing the number of QTL per linkage group 
has almost no effect on the number of true QTL detections (Table 6). 

Even with 5 QTL per linkage group, resulting in 20 QTL for each 
trait, only about 2 true QTL are detected, regardless of the outlier 
method. Inspection of individual runs and distributions of QTL 
effects show that regardless of the underlying number of QTL, only a 
small number ever contribute substantially to population divergence. 
Thus, the failure to detect QTL is a consequence of the biological 
system more than the techniques used to detect them.

Finally, the simulations are surprisingly insensitive to recombin-
ation rate (Table 6). Even with a 40-fold change in recombination 
rate per linkage group (from 0.10 to 4), the number of QTL detected 
remains relatively stable, although we do see a difference between 
the smoothed outlier approach and the Whitlock and Lotterhos 
(2015) approach here.

Discussion

In this report, we use a simulation-based approach to model a 
genetic architecture including pleiotropy and epistasis, which 
allows us to test the hypothesis that these genetic complexities 
will impact the efficacy of genome-wide scans to detect outlier 

Figure 4. Histograms showing the distributions of trait 1 and trait 2 QTL FST values with and without epistasis in the absence of pleiotropy. These results are 
compiled from 30 simulation runs with 4 linkage groups and 1 QTL for each trait per linkage group (for a total of 120 QTL). The migration rate is 0.016, and other 
parameter combinations are identical to those used for Table 2. Bars are colored based on whether the QTL was detected as an outlier, with gray indicating QTL 
that were not detected and red indicating QTL that were detected. The histograms on the left show results for trait 1 and those on the right show results for 
trait 2. The top row shows results without epistasis and the bottom row shows results with epistasis (σ2

ε). In the absence of epistasis, trait 1 loci (upper left) with 
large FST values were almost always detected, as indicated by the abundance of red in the bars corresponding to FST larger than 0.2. Note that all detections are 
for marker loci in the vicinity of the QTL, as QTL FST values are assumed to be unknown to the researcher. The trait 2 loci (upper right) almost always had small 
FST values and almost none were implicated as outliers. The few that were identified as outliers reflect spurious coincidences (as do apparent detections of QTL 
with FST values near 0). The lower half of the figure shows a very different pattern in the presence of epistasis. The number of trait 1 loci with large FST values is 
substantially diminished (lower left), resulting in fewer outlier detections. In addition, now a number of trait 2 loci have large FST values (lower right) and are 
implicated as legitimate outliers. This result occurs because the trait 2 loci now affect trait 1 through their epistatic interactions with trait 1 loci.
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loci responsible for local adaptation. Our model differs from most 
other such models in that we explicitly simulate the underlying 
quantitative-genetic architecture, including a specified number of 
quantitative trait loci, and use these loci to determine individual 
trait values. Selection then acts on the trait values, rather than 
directly on the underlying loci. We also model a suite of marker 
loci, explicitly located on linkage groups, and place our QTL ran-
domly on these linkage groups. After a period of evolution and 
divergence among populations, we simulate a genome-wide study 
of SNPs and ask whether the study can identify outlier loci associ-
ated with the QTL.

Regardless of the number of QTL, the mean number of true QTL 
detections is never much larger than 2, and we generally find at least 
as many false positives as true positives. Encouragingly, loci mak-
ing large contributions to population divergence and large contribu-
tions to within-population genetic variance are usually detectable. 
However, in the type of system we model here, most population di-
vergence is caused by a small number of loci (often 1 or 2), even 
when the genetic architecture is highly polygenic. Our results also 
show that pleiotropy has almost no effect on the success of genome-
wide scans for outlier loci. Epistasis, on the other hand, reduces the 
efficacy of genome-wide scans for QTL by spreading the signal of se-
lection across a larger number of interacting loci, relative to a strictly 
additive genetic architecture.

The Evolution of the Genetic Architecture
Regardless of the genetic architecture under consideration, the simu-
lated populations evolve toward their optima, with the position of 
the population mean determined by a migration-selection balance 
(King and Lawson 1995; Hendry et al. 2001). As expected, low mi-
gration rates result in population means near their respective op-
tima. As the migration rate increases, each population is displaced 
further from its optimum, and we see a dramatic increase in the 
additive genetic variance, as maladaptive alleles migrate into each 
population. This phenomenon is identical to the situation modeled 
by Guillaume and Whitlock (2007), who observed that migration 
tends to stretch the G-matrix in the direction of the optimum of the 
population from which the migrants originated. Interestingly, in our 
model most of the divergence and the increase in genetic variance 
are caused by a small number of QTL, as the majority of QTL have 
FST values near 0 and make small contributions to the additive gen-
etic variance. When the migration rate becomes extremely high, the 
populations essentially behave as a single panmictic group, with a 
mean near the midpoint between the population optima. In this case, 
we see an increase in additive genetic variance relative to the case 
with no migration as a consequence of spatially varying selection.

In the absence of pleiotropy, the 2 traits evolve nearly independ-
ently. When the 2 populations have different trait 1 optima but iden-
tical trait 2 optima, trait 2 remains near its optimum, regardless of 

Figure 5. The relationship between the between-population difference in mean allelic effects and FST for trait 1 and trait 2 QTL in the absence and presence of 
epistasis. The between population difference in allelic effect is calculated on a per-locus basis as the average allelic effect in population 1 minus the average 
allelic effect in population 2. In the absence of epistasis, these effects are additive effects, and in the presence of epistasis we use reference effects for simplicity. 
These values are typically positive for trait 1 loci because population 1 has a trait 1 optimum of 4 and population 2 has a trait 1 optimum of −4. Each point 
represents a single QTL, with red diamonds indicating loci that were identified as outliers and gray circles representing loci that were not flagged as outliers. 
With or without epistasis, loci with larger differences in additive (or reference effects) tend to have larger FST values and tend to be detected as outliers. In the 
absence of epistasis, trait 2 loci (upper right panel) tend to differ very little among populations and show low FST values, as expected given that the populations 
have identical trait 2 optima. However, in the presence of epistasis (lower right panel), we now see more divergence among populations in trait 2 locus reference 
effects and more trait 2 loci with high FST values. The sign of divergence in trait 2 reference effects depends on the values of epistatic parameters corresponding 
to these loci. Parameter values for this figure are the same as those used for Table 2, with a migration rate of 0.016.
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the change in the mean of trait 1. We see a very slight increase in 
additive genetic variance in trait 2 as the additive genetic variance 
for trait 1 increases, probably caused by occasional trait 2 loci that 
are tightly linked to nearby trait 1 loci.

With the addition of pleiotropy to the model, the most dramatic 
effect is that any increase in additive genetic variance in trait 1 also 
results in an increase in additive genetic variance in trait 2.  This 
effect is a well understood consequence of pleiotropy (Lande 1980; 
Turelli 1985; Bürger and Krall 2004). The fact that each locus affects 
both traits results in a situation in which any mechanism impacting 
the genetic variance of one trait also alters the genetic variance, often 
to a lesser degree, of any pleiotropically linked trait. Our simula-
tions also reveal a trend for trait 1 to exhibit less additive genetic 

variance under pleiotropy than in the absence of pleiotropy (Lande 
1980; Turelli 1985; Bürger and Krall 2004), and this reduction is 
caused by the loss of some alleles contributing to variation in trait 1 
as a consequence of stabilizing selection on trait 2.

Our study is among the first to examine population divergence 
under the multilinear model of epistasis (Hansen and Wagner 2001; 
Fierst and Hansen 2010; Jones et al. 2014). Regardless of the mag-
nitude of the variance in epistatic parameters (i.e., the absolute 
magnitude of epistasis), most of the genetic variance for the quan-
titative traits in our model ends up being additive genetic variance, 
a result typical for the multilinear model (Carter et al. 2005; Jones 
et al. 2014). In addition, population differentiation seems to result 
in an even higher proportion of the genetic variance being additive 
than would occur for populations with identical optima (or a single 
population evolving in isolation). For instance, in 2 populations 
with identical trait 1 optima of 0, assuming an epistatic parameter 
variance of 6.4 and 12 pleiotropic QTL, the total genetic variance 
for trait 1 is 0.206, and the corresponding additive genetic variance 
is 0.181, so 88% of the genetic variance for trait 1 is additive. Under 
the same circumstances, except with trait 1 optima of 4 and −4 for 
the 2 populations, the total genetic variance for trait 1 is 3.376 
and the additive genetic variance is 3.263, so now 97% of the total 
genetic variance is additive. This increase in additive genetic vari-
ance is a consequence of much of the segregating variation within 
each population arising from loci with large between-population 
differences in reference effects. Individual loci with huge effects 
contribute mainly additive genetic variance to the population, es-
pecially when the populations are nearly identical with respect to 
most other QTL, as we observed in our model. Because nearly all 
of the genetic variance is additive in the scenarios we consider, we 

Figure 6. Patterns of FST for pleiotropic QTL in the absence of epistasis. 
Shown are the histogram of QTL FST values for pleiotropic loci (top), FST as 
a function of the per-locus between-population differences in allelic effects 
for trait 1 (middle panel), and FST as a function of the per-locus between-
population differences in allelic effects for trait 2 (bottom panel). As in Figure 
4, the histogram (top) shows detected loci in red and undetected loci in gray. 
In the middle and bottom panels, loci flagged as outliers are shown as red 
diamonds and undetected loci are shown as gray circles. The results from 
this figure are from 30 simulations run under the parameter combinations 
used to produce Table 3, with a migration rate of 0.016.

Figure 7. The relationship between the between-population difference in 
mean allelic effects and the within-population variance in allelic effects with 
and without epistasis and pleiotropy. The results shown in this figure are 
from 30 simulation runs under parameter values identical to those used in 
Figures 4–6. Results are shown for simulations without epistasis and without 
pleiotropy (blue diamonds), with epistasis but without pleiotropy (yellow 
triangles), and without epistasis but with pleiotropy (gray circles). Values on 
the x axis are calculated as the absolute value of the mean trait 1 allelic effect 
in population 1 minus the mean trait 1 allelic effect in population 2, because 
we care here about the absolute difference among populations regardless 
of the sign. Values on the y axis are calculated as the variance among 
individuals in genotypic values at the locus in question, where the genotypic 
values are calculated as the sum of the 2 allelic effects (or reference effects) 
at the relevant locus in a given individual. This figure indicates a universal 
tendency for the loci with the largest differences in allelic effects between 
populations to make the largest contribution to the additive genetic variance 
within populations.
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ignore the distinction everywhere in the present article, except in 
this section.

Given that our diverging populations possess mostly additive 
genetic variance, the observation that epistasis has only minor effects 
on population divergence (relative to the same architecture without 
epistasis) is not surprising. Rather, the extent of divergence seems 
to be driven mainly by the strength of selection and the rate of mi-
gration, as noted above. Thus, genetic effects of local adaptation re-
quire some gene flow but not too much, and the exact meaning of 
“some but not too much” depends on the selective regime and the 
demographics of the individual system. However, it does not seem to 
depend on the details of epistasis and pleiotropy, which should be a 
comforting result for most empiricists.

A few other studies of the evolution of the genetic architecture 
under the multilinear model provide some context for the present 
study. The most similar study to ours was conducted by Fierst 

and Hansen (2010), who investigated the evolution of Bateson–
Dobzhansky–Muller (BDM) incompatibilities between 2 isolated 
populations. They modeled only one trait, allowed no migration, and 
assumed the same trait optimum in both populations. Nevertheless, 
they did observe genetic divergence at individual loci, as divergent 
alleles arose by mutation and rose to fixation in their population of 
origin. These evolving genetic architectures often gave rise to hybrid 
incompatibilities between the 2 populations. While an analysis of 
BDM incompatibilities was beyond the scope of the present article, 
future studies could profitably explore the evolution of such incom-
patibilities in a multiple-trait system involving populations with dif-
ferent optima linked by gene flow, as we studied here. Hermisson 
et al. (2003) studied a single population experiencing stabilizing se-
lection, and showed that epistasis results in a reduction of additive 
genetic variance at mutation-selection balance. They also found that 
loci with high mutation rates tended to evolve smaller mutational 

Table 6. The effects of various parameters on FST outlier analyses

Variable of inter-
est and its value 

σ2
ε

Mean 
marker FST

Mean 
Trt 1 

QTL FST

Mean 
Trt 2 

QTL FST

No. smoothed 
FST outliers

No. near 
Trt 1 QTL 

No. near 
Trt 2 QTL

No. W&L 
FST outliers

No. near 
Trt 1 QTL

No. near 
Trt 2 QTL

Carrying capacity
K = 250 0 0.0172 0.1046 0.0175 4.800 1.700 0.133 3.533 1.433 0.067
K = 250 1.6 0.0172 0.0461 0.0484 5.300 0.700 0.867 3.500 0.633 0.733
K = 4000 0 0.0380 0.1415 0.0382 4.333 2.433 0.200 5.000 2.333 0.200
K = 4000 1.6 0.0409 0.1499 0.0741 3.967 1.700 0.467 4.867 1.533 0.667

Sample size
S = 10 0 0.0433 0.1641 0.0445 4.767 1.733 0.300 3.500 1.200 0.100
S = 10 1.6 0.0453 0.0868 0.0810 4.500 0.800 0.733 3.667 0.500 0.467
S = 500 0 0.0271 0.1271 0.0284 4.700 1.967 0.333 6.333 2.067 0.567
S = 500 1.6 0.0300 0.0765 0.0795 4.767 0.900 0.667 6.000 0.933 0.833

Selection strength
ω11 = 19 0 0.0922 0.3091 0.0757 4.500 1.633 0.267 2.133 0.600 0.167
ω11 = 19 1.6 0.1081 0.2356 0.1925 4.267 1.000 0.633 1.767 0.067 0.067
ω11 = 99 0 0.0177 0.0761 0.0163 4.633 1.567 0.133 6.967 1.733 0.400
ω11 = 99 1.6 0.0182 0.0550 0.0382 4.467 0.867 0.600 6.067 0.867 0.667

Epistasis amount
σ2
ε = 0.4 0.4 0.0306 0.1075 0.0480 4.667 1.200 0.433 5.467 1.200 0.567

σ2
ε = 0.8 0.8 0.0296 0.1005 0.0605 4.900 1.167 0.567 6.000 1.233 0.600

σ2
ε = 3.2 3.2 0.0313 0.0752 0.686 4.433 0.900 0.633 5.867 0.900 0.600

σ2
ε = 6.4 6.4 0.308 0.0879 0.0710 4.433 0.933 0.633 5.933 0.933 0.633

No. marker loci per linkage group
nm = 500 0 0.0305 0.1459 0.0270 1.700 1.100 0.467 2.333 1.533 0.533
nm = 500 1.6 0.0306 0.1035 0.0633 1.533 0.833 0.533 2.467 1.233 0.867
nm = 10 000 0 0.0285 0.1399 0.0326 14.800 1.833 0.167 17.067 1.633 0.133
nm = 10 000 1.6 0.0313 0.1021 0.0575 16.333 0.767 0.433 15.400 0.800 0.333

No. QTL per linkage group
nq1 = nq2 = 2 0 0.0289 0.1372 0.0291 4.900 2.033 0.267 5.967 2.100 0.333
nq1 = nq2 = 2 1.6 0.0301 0.0984 0.0601 4.933 0.933 0.667 5.733 0.900 0.833
nq1 = nq2 = 5 0 0.0273 0.0730 0.0284 4.467 2.333 0.533 5.267 2.333 0.700
nq1 = nq2 = 5 1.6 0.0287 0.0544 0.0407 4.900 1.467 0.900 5.267 1.367 1.100

Recomb. rate
R = 0.10 0 0.0394 0.1442 0.0350 4.300 1.500 0.167 2.933 0.900 0.033
R = 0.10 1.6 0.0401 0.1104 0.0687 4.267 0.867 0.633 3.200 0.467 0.333
R = 4.00 0 0.0209 0.1166 0.0180 4.133 1.567 0.100 9.567 1.700 0.633
R = 4.00 1.6 0.0222 0.0827 0.0466 3.567 0.967 0.633 9.300 1.200 0.767

Results shown here assume no pleiotropy, but the qualitative patterns are similar whether or not loci are pleiotropic. We also assume 2 QTL per linkage group 
per trait, resulting in a total of 8 QTL per trait, except where noted. Except for the parameter being perturbed (indicated in the first column), the epistatic param-
eter variance (indicated in the second column), and the number of QTL per trait, all other parameter values are identical to those listed in Table 1. In the case of 
carrying capacity, the migration rate is adjusted to keep the number of migrants, rather than the migration rate, constant as the population size varies. Column 
labels for columns 3 through 11 have the same meaning as in Table 4.
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effects compared with loci with low mutation rates (Hermisson et al. 
2003). This line of inquiry was extended to populations experiencing 
fluctuating selection by Le Rouzic et al. (2013), who showed that 
unstable optima tended to counteract the evolution of canalization. 
These results (Hermisson et al. 2003; Le Rouzic et al. 2013) illustrate 
that epistasis plays a role in the evolution of evolvability and canal-
ization (Hansen 2006), topics that would be interesting to study in 
an array of populations linked by gene flow.

Detecting Outlier Loci without Epistasis or 
Pleiotropy
When 2 populations diverge, with quantitative traits modeled 
according to a standard additive model like the one we used here, 
most of the divergence seems to involve huge differences in al-
lelic effects at a small number of loci. Under most circumstances 
under consideration here, at least some outlier loci are detectable 
in our simulations. However, in no cases are all of the QTL iden-
tifiable as outliers, and the main cause of this constraint appears 
to be biological in the sense that loci making small contributions 
to population divergence tend to have low FST values. Ours is not 
the first study to conclude that most trait divergence involves a 
small number of QTL, as an analysis by Yeaman and Whitlock 
(2011) shows the same pattern, a result confirmed analytically by 
Geroldinger and Bürger (2014) in a 2-locus model. This tendency 
for a small number of QTL to diverge occurs despite the fact that 
all loci in our simulations were identical with respect to mutation 
rates and mutational variances. It also occurs regardless of the total 
number of QTL. For any number of modeled loci, including as 
many as 20 QTL per trait in some cases, our analyses never identi-
fied more than about 2.5 true QTL on average in the best-case 
scenarios. This finding is consistent with the work of Vilas et al. 
(2012), whose model uses a trait with a strictly additive genetic 
architecture without pleiotropy and applies selection at the level of 
the trait phenotype. Their results also indicate that most divergence 
involves a small number of QTL, resulting in most QTL being un-
detectable in genome-wide scans.

For outlier detection, we use simple approaches that are readily 
hard-coded into our simulation model. This approach allows a wider 
exploration of sample space, at the expense of ignoring methods that 
might perform better for outlier detection. Our goal here, however, 
is to examine how pleiotropy and epistasis affect outlier scans, ra-
ther than to systematically compare methods. In addition, our results 
show that the smoothed FST confidence interval approach detects 
nearly all of the QTL with appreciable FST values (Figures 4–6). The 
nondetected QTL have FST values that bury them in the broader sea 
of marker FSTs, rendering them undetectable without incurring an 
unacceptably high rate of Type II error.

Because we used simplified methods of outlier detection, 
our study should not be considered a test of the performance of 
the OUTFLANK package, which implements the Whitlock and 
Lotterhos (2015) approach. Several details of our approach differ 
from that implemented in OUTFLANK. First, we use all marker 
loci without pruning the dataset to include only loci with low 
linkage disequilibrium. Second, we use a χ2 distribution with 1 df 
(i.e., 1 − number of populations), while Whitlock and Lotterhos 
(2015) use an iterative process to remove outlying loci from 
the distribution before determining the appropriate χ2 distribu-
tion. Third, we test loci for significance only for markers near 
a smoothed FST peak, thus limiting tests to a smaller part of the 

genome. However, inspection of many plots like those shown in 
Figures 1–3 shows that our implementation almost always identi-
fies large peaks as significant. By more carefully following the 
Whitlock and Lotterhos (2015) algorithm, we might have been 
able to reduce the number of false positives, but additional true 
positives would still have remained undetectable because un-
detected true positives tend to fall in genomic regions with un-
substantial FST peaks. Our analysis seems to indicate that the 
Whitlock and Lotterhos (2015) technique experiences an increase 
in false positives when the mean FST decreases or the number of 
marker loci increases, but these patterns should be disregarded 
until they are explicitly addressed in studies designed to test the 
performance of OUTFLANK per se.

Our demographic scenario also precludes many methods of 
analysis. For instance, the methods used by Fdist2 (Beaumont and 
Nichols 1996) and LOSITAN (Antao et  al. 2008), based on the 
heterozygosity–FST relationship, perform poorly when only 2 pop-
ulations are sampled (Flanagan and Jones 2017). Similarly, Bayenv 
(Günther and Coop 2013) and FLK (Bonhomme et al. 2010), two 
other recently developed methods, also perform better when more 
than 2 populations are sampled, as they correct for population 
history, a correction that has little meaning in the 2-population 
case. Other promising methods include those that use genetic–en-
vironment association approaches, such as those implemented by 
LFMM (Frichot et al. 2013) and PCAdapt (Duforet-Frebourg et al. 
2014). Our simulations do not include environmental variables, 
however, so these methods also are not appropriate. All of these 
methods could profitably be explored in future studies using our 
approach to the genetic architecture but including a larger number 
of populations inhabiting a range of simulated habitat types.

Our results are probably somewhat dependent on assumptions 
regarding marker loci. We chose to allow a maximum of 4 alleles 
per locus, so the markers can be interpreted as SNPs. Our simulated 
markers behaved very much like actual SNPs, in the sense that they 
tended to have a common allele at a high frequency, with the other 
alleles being rare. For instance, in a sample run under the core par-
ameter values, we found that the common allele had a mean fre-
quency of 0.84 across all loci by the end of the simulation when 
outlier scans were conducted. This value for the major allele fre-
quency would not be unexpected for real data, particularly if the 
researchers chose to use the more informative loci for their analysis. 
Under the core parameter values (Table 1), we also model a relatively 
small genome, in the sense that we model 4 chromosomes with a 
recombination rate of 0.25 per generation per chromosome. Thus, 
the total genome modeled here is only 100 centimorgans in length, 
and the linkage groups are probably best interpreted as parts of a 
genome. Larger genomes would almost certainly result in an increase 
in false positives and greater difficulties in detecting outlier loci. Our 
marker loci should also be interpreted as being in quite close prox-
imity to one another. For instance, in a sample run under default 
parameter values (Table 1), the mean D′ between neighboring mark-
ers was 0.886. In addition, the location of a QTL is defined by its 
associated marker locus, so a QTL will usually be in strong linkage 
disequilibrium with at least 1 marker. Exceptions can occur when the 
marker locus loses all polymorphism or mutations reduce the link-
age disequilibrium between a QTL and its location-defining marker. 
Regardless, our results (Figures 1–3) show that linkage disequilib-
rium does decay substantially across our linkage groups, and our 
Manhattan plots are not dissimilar from those observed in empirical 
studies of local adaptation.
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Effects of Pleiotropy and Epistasis on Outlier 
Analysis
Adding pleiotropy to the genetic architecture of traits results in al-
most no change in the prospects for identifying QTL affecting the 
trait involved in local adaptation. The mean FST values for the QTL 
affecting trait 1 are approximately the same with and without plei-
otropy, as are the number of apparent QTL detections and the pro-
portion of these detections near true QTL (cf. Tables 4 and 5). Under 
pleiotropy, some of these loci have reasonably large differences be-
tween populations in their mean effects on trait 2, but apparently 
these differences play a minor role in aiding or preventing differenti-
ation (see Figure 6, bottom panel). Here, we restrict attention to a bi-
variate optimum that moves only along the trait 1 axis. Presumably, 
movement in a different direction in bivariate phenotypic space 
would result in a stronger signal of selection on pleiotropic as com-
pared to nonpleiotropic QTL.

The effects of epistasis on genome-wide scans for adaptive QTL 
are more pronounced, and they occur whether or not pleiotropy 
is also included in the model. In particular, epistasis universally 
decreases FST values for QTL affecting the trait involved in local 
adaptation, compared with the case without epistasis (Tables 4 and 
5). This reduction in FST makes the causal QTL less detectable in 
genome-wide scans for outliers. While the number of apparent detec-
tions remains almost the same with and without epistasis, the pro-
portion of these detections that represent true positives decreases. 
This result makes intuitive sense, because epistasis should spread the 
signature of selection across a greater number of loci, resulting in 
a weaker per-locus signal spread more evenly across the genome. 
A  weak, diffuse signal will be less detectable than a strong, con-
centrated signal in a genome-wide scan. Interestingly, in the case of 
epistasis for nonpleiotropic loci, a substantial fraction of detected 
QTL have direct effects on trait 2.  These loci affect trait 1 indir-
ectly through their interactions with trait 1 QTL. Thus, in the pres-
ence of epistasis, detected loci include those with direct and indirect 
effects on the trait in question. Even factoring in the detected trait 2 
QTL, however, genome-wide scans still detect fewer total QTL when 
epistasis is present than when it is absent. Nevertheless, some loci 
were detected, even with strong epistasis, indicating that an epistatic 
genetic architecture does not preclude success in the search for loci 
involved in local adaptation.

Caveats and Limitations of the Study
This study leaves a number of unanswered questions, and many 
other avenues are ripe for continued investigation. The biggest short-
coming of our article is that we model a very simple demographic 
scenario with only 2 populations linked by migration. More com-
plex scenarios, with additional demes, will almost certainly result 
in different results in terms of how many QTL can be detected and 
which techniques are most appropriate. However, our scenario does 
have the advantage that pairwise population comparisons are pos-
sible in almost all population genetic studies. Nevertheless, future 
studies of the effects of epistasis and pleiotropy should endeavor to 
represent more complex demographic scenarios with more extensive 
sampling regimes.

Our study also uses only one model of gene interactions, the mul-
tilinear model. In this model, all loci have direct additive effects on 
one or both traits, as well as epistatic effects. Real gene networks may 
be quite different than those represented by the multilinear model. 
Thus, future work should investigate how the specific model of epis-
tasis impacts migration-selection balance and the detection of outlier 

loci. We also use epistatic parameters drawn from a normal distribu-
tion with a mean of 0, resulting in no net positive or negative epis-
tasis. Directional epistasis can have large impacts on evolutionary 
processes (Carter et al. 2005; Hansen 2013), so this phenomenon, 
too, is worthy of future study as it relates to local adaptation and 
population genomics. Some other genetic complications also could 
play a role in local adaptation and the detection of outlier loci. For 
example, our approach to modeling linkage groups did not allow for 
major chromosomal mutations, such as inversions, even though ana-
lytical theory indicates that structural rearrangements can facilitate 
local adaptation (Kirkpatrick and Barton 2006). In general, more 
realistic models of marker loci, gene networks, and chromosomal 
evolution in the context of population genomics approaches would 
be welcome additions to the literature.

As discussed above, our study also uses highly simplified methods 
for the detection of outlier loci. Our results show that these meth-
ods perform well in identifying FST peaks in our pairwise population 
comparisons and allow us to investigate the effects of the genetic 
architecture on the detection of outlier loci. However, future stud-
ies, modeling more realistic demographic scenarios, would certainly 
benefit from using more sophisticated techniques for outlier detec-
tion, most of which are not appropriate for the pairwise comparisons 
modeled here. In addition, recent simulation-based studies show that 
methods examining genetic–environment associations have greater 
power to detect loci involved in local adaptation (Lotterhos and 
Whitlock 2015). We did not model environmental variables, so a 
more comprehensive study involving environmental clines or pos-
sibly even multiple environmental variables selecting on multiple 
traits could reveal additional insights. In short, we need additional 
studies comparing outlier detection methods, a topic beyond the 
scope of the present study, and this need will grow as more analyt-
ical methods are developed in the near future.
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