
© The American Genetic Association 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 825

Journal of Heredity, 2018, 825–829
doi:10.1093/jhered/esy054

Computer Note
Advance Access publication October 6, 2018

Computer Note

The G-matrix Simulator Family: Software for 
Research and Teaching
Adam G. Jones, Reinhard Bürger, and Stevan J. Arnold

From the Department of Biological Sciences, University of Idaho, Moscow, ID 83844 (Jones); the Faculty of 
Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria (Bürger); and the Department 
of Integrative Biology, Oregon State University, Corvallis, OR 97331 (Arnold).

Address correspondence to A. G. Jones at the address above, or e-mail: adamjones@uidaho.edu.

Received August 10, 2018; First decision September 21, 2018; Accepted October 4, 2018.

Corresponding Editor: Scott Hodges

Abstract

Genetic variation plays a fundamental role in all models of evolution. For phenotypes composed 
of multiple quantitative traits, genetic variation is best quantified as additive genetic variances 
and covariances, as these values determine the rate and trajectory of evolution. Additive genetic 
variances and covariances are often summarized conveniently in the G-matrix, which has 
additive genetic variances for each trait on the diagonal and additive genetic covariances as 
its off-diagonal elements. The evolution of the G-matrix is an interesting topic in its own right, 
because the processes that affect trait means also affect the distribution of standing genetic 
variation, which, in turn, feeds back to affect the rate of change of trait means. Theoretical studies 
of the G-matrix have profitably employed simulation-based models because the topic is often too 
complex to yield meaningful analytical results. Here, we present a series of G-matrix simulation 
software packages, which have emerged from about 15 years of research on this topic. These 
simulation models are useful for research and for building intuition regarding the evolution of 
the G-matrix under a wide variety of circumstances. A tutorial and source code also provide a 
foundation upon which future models can be built. These tools will be useful to students as well 
as researchers.

Subject area: Quantitative genetics and Mendelian inheritance, Bioinformatics and computational genetics  
Keywords:  breeder’s equation, C++, complex traits, quantitative genetics, simulations, theory

The additive genetic variance is a key facet of evolutionary quantita-
tive genetics. The importance of additive genetic variance is apparent 
from the breeder’s equation: R = h2S = (VA/VP)S, where the additive 
genetic variance, VA, plays a direct role in determining the response 
to directional selection (h2 is the heritability, which is defined as the 
additive genetic variance, VA, divided by the total phenotypic vari-
ance, VP; R is the response to selection; and S is the selection differ-
ential; Falconer and Mackay 1996). For a phenotype encompassing 
multiple traits, we use the multivariate breeder’s equation ( ∆z G= ββ ),  
and the additive genetic variance is replaced by G, a matrix con-
taining additive genetic variances and additive genetic covariances 

(Lande 1979; Lande and Arnold 1983). In the multivariate breeder’s 
equation, ∆z  is a vector of changes in trait means, and β is a vec-
tor of selection gradients (Lande and Arnold 1983). Thus, given 
knowledge of the nature of selection acting on the traits (i.e., β), the 
response to selection can be predicted only if G, often somewhat 
redundantly called “the G-matrix,” is also known.

While the contemporary G-matrix is knowable in principle, back-
ward- or forward-looking evolutionary analyses require that G be 
known over the timeframe of interest (Lande 1979; Arnold et al. 2001). 
This realization has spawned a subdiscipline of comparative quantita-
tive genetics (Steppan et al. 2002), which is concerned with how the 
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G-matrix changes over evolutionary time. As this field has matured, 
it has embraced the evolution of the G-matrix as an interesting topic 
in its own right rather than as an irritating source of noise interfering 
with the quest to resolve patterns of selection (Draghi and Whitlock 
2012; Aguirre et al. 2014; Wood and Brodie 2015). Numerous empir-
ical and theoretical studies have taken aim at the evolution of G 
(reviewed in Steppan et al. 2002; Arnold et al. 2008). On the empir-
ical front, most studies involve estimating G-matrices and compar-
ing them among populations within a species (Johansson et al. 2012; 
Puentes et al. 2016) or species within a genus (Roff et al. 1999; Bégin 
and Roff 2001), although some comparisons involve even larger taxo-
nomic distances (Kohn and Atchley 1988). With respect to theoretical 
approaches, analytical theory quickly reached an impasse on G-matrix 
stability (Lande 1980; Turelli 1985, 1988; Turelli and Barton 1990), 
so simulation-based studies were embraced starting near the turn of 
the millennium (Jones et al. 2003, 2004, 2012; Bürger and Krall 2004; 
Krall 2005; Guillaume and Whitlock 2007; Revell 2007).

Here, we introduce a set of software packages and a tutorial 
designed to overcome 2 major barriers to entry into the realm of 
G-matrix evolution. The first hurdle for students of the G-matrix 
is to gain an intuitive understanding of how the G-matrix changes 
over evolutionary time and how it responds to various evolutionary 
pressures. To overcome this first difficulty, we present 2 versions of a 
Windows-based G-matrix simulator with a graphical interface. The 
graphical interface permits easy manipulation of parameter values, 
and the output includes an animated, graphical representation of the 
evolving G-matrix. The second difficulty for scientists interested in 
G-matrix evolution is that the development of G-matrix models can 
be difficult, requiring advanced programming skills and myriad deci-
sions regarding how nature should best be translated into an in silico 
representation. To overcome this problem, we provide a command-
line version of the G-matrix simulator, along with the source code 
and a step-by-step tutorial documenting the development of the pro-
gram (Jones 2018). This program and the approach it exemplifies 
provide a starting place for simulation-based models of the evolution 
of complex traits. These base models provide a solid foundation that 
can be modified for future, more realistic studies, as our empirical 
understanding of complex traits expands. Overall, these tools will be 
useful for teaching quantitative genetics and for the development of 
future quantitative genetic models by interested researchers.

Methods

Here, we briefly introduce the basic model before describing each 
program. These software packages are capable of producing the full 
suite of results described in our articles that focused on G-matrix 
evolution per se (e.g., Jones et al. 2003, 2004, 2012).

The model is an individual-based Monte Carlo simulation built 
on models developed by Bürger et al. (1989) and Bürger and Lande 
(1994) to study the evolution of the additive genetic variance for a 
single trait. Our model extends the univariate model by adding a sec-
ond trait. This 2-trait model adds additional complexity but retains 
intuitive appeal because the selection surface and G-matrix can easily 
be visualized in the 2-trait case. The traits are assumed to be deter-
mined by a number of pleiotropic, additive loci, so an individual’s 
breeding value is calculated by simply summing across loci. The life 
cycle includes monogamous mating, mutation and recombination, 
natural selection, and population regulation. In this version of the 
model, loci are unlinked, so they recombine freely. Natural selection 
occurs according to a bivariate Gaussian individual selection sur-
face (Lande 1979), which allows stabilizing selection, correlational 

selection, and directional selection, depending on the shape of the 
selection surface and the position of the bivariate optimum. When 
a mutation occurs, mutational effects are drawn from a bivariate 
Gaussian distribution with specified variances and covariance. These 
new effects are added to existing effects, following the continuum 
of alleles model (Crow and Kimura 1964). After natural selection, 
population regulation is imposed on the survivors. Individuals are 
culled at random until the number of surviving adults equals the 
carrying capacity. Further details of the model are provided by Jones 
et al. (2003, 2004, 2012).

G-matrix Simulator 2014 Version
This version is available at https://github.com/JonesLabIdaho/
GmatrixSimulator2014. The 2014 version includes the original 
model that was used to produce the data for Jones et al. (2003, 2004, 
2012). Thus, it permits a stationary optimum or a moving optimum, 
as well as stochastic or episodic movement of the optimum. The 
output includes every variable calculated in these studies, and the 
documentation describes the meaning of each important variable. 
This program is provided as a compiled Windows executable, which 
should run on any version of Windows since Windows XP (including 
Windows 7 and 10). To run the program, the user simply needs to 
unzip the archive (if the download is compressed) and double click 
on the executable icon. The program has a graphical user interface, 
which allows the parameter values to be set easily (Figure 1).

G-matrix Simulator Home Version (2016)
The 2016 version of the G-matrix Simulator, also known as the 
“home version” (available at https://github.com/JonesLabIdaho/
GmatrixHomeVersion), has been adapted for use in the Evolutionary 
Quantitative Genetics short course offered annually by Stevan 
J. Arnold and Joseph Felsenstein. This version of the model is stream-
lined to make it more effective for teaching purposes. For instance, 
the output is reduced to include a smaller set of key variables, such as 
the genetic variances and covariances, population means, angle of the 
leading eigenvector of the G-matrix (i.e., gmax; Schluter 1996), and sev-
eral other useful summary statistics. The user interface is also updated 
to provide pop-up tips for each parameter on a mouse-over. Like the 
2014 version, this program runs on all modern versions of Windows.

G-matrix Simulator Command Line
The G-matrix Simulator Command Line program is a completely 
rewritten version of the G-matrix Simulator designed to compile and 
run on any operating system. The source code is available at https://
github.com/JonesLabIdaho/GmatrixCommandLine, and any mod-
ern C++ compiler can be used to compile it. The tutorial C++ for 
Biologists: Evolutionary Models (Jones 2018) describes, in a step-by-
step fashion, the development of the object-oriented source code for 
this project. The tutorial is available for free on the Jones Lab web-
site (https://pipefishguysite.wordpress.com/jones-lab-publications/). 
The GitHub repository also includes example BASH shell scripts for 
running the compiled program on Linux and a sample R script for 
visualizing the G-matrix at the end of a simulation run.

Results and Discussion

Here, we present a family of G-matrix simulation software appli-
cations. Each of these programs fills a slightly different niche. In 
each case, user-friendliness is a key component. None of the soft-
ware packages requires dependencies or multistep installations. Each 
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package can also be used to visualize the G-matrix over evolutionary 
time, thus allowing users to build an intuitive understanding of how 
the G-matrix behaves under various selection scenarios. In the cases 
of G-matrix Simulator 2014 and the G-matrix Simulator Home 
Version, the graphical output is produced automatically as part of 
the user interface during each simulation run (Figure 2). In the case 
of G-matrix Simulator Command Line, the output can be loaded 
into R, and a simple script can be used to draw the G-matrix over 
user-specified time intervals (Figure 3).

These programs have been developed for 2 specific purposes. 
The first purpose is related to instruction, primarily at the graduate 
level. The G-matrix Simulator Home Version provides a very sim-
ple way for students to explore G-matrix evolution under various 

evolutionary scenarios. The skills required to run the program are 
minimal, as it involves downloading the program from GitHub and 
double-clicking on the executable. The parameters are then easily 
altered through a graphical user interface. The running program 
produces a real-time graphical depiction of the G-matrix evolving 
in phenotypic space, and the program provides text output of per-
generation summary statistics. One limitation is that this program 
runs only on Windows machines, or other operating systems with 
some sort of Windows emulator installed. For non-Windows users, 
the G-matrix Simulator Command Line program can be used with 
the provided R script for G-matrix plotting. This program is slightly 
more difficult to use, as it requires at least minimal familiarity with 
the command line.

Figure 1. The parameter-control window in the graphical user interface for the G-matrix Simulator 2014 and 2016 versions. Parameter names are mostly self-
explanatory, and they are also described in detail in the user manual.

Figure 2. Graphical output of the G-matrix Simulator Home version. Here, the G-matrix is drawn every 200 generations during a 2000 generation simulation 
run. The leftmost cross is the position of the starting optimum (and the G-matrix corresponding to this generation is not shown). All other crosses represent the 
position of the optimum as the simulation runs, drawn at 200-generation intervals. The optimum is moving to the right, indicating that the trait 1 optimum (on 
the x-axis) is changing while the trait 2 optimum is stationary (y-axis). The G-matrix is lagging up and to the left of the optimum. The x-axis lag occurs because 
the population mean cannot keep up with the moving optimum. The y-axis lag is caused by a correlated response to selection on trait 2, as a consequence of a 
strongly positive genetic correlation (evidenced by the 45-degree orientation of G), an example of the “flying-kite effect” (Jones et al. 2004). For each depiction 
of G, the 2 lines represent the eigenvectors, scaled by the corresponding eigenvalues, and the small dots are the breeding values of the individuals in the 
population. In an actual simulation run, the G-matrices are drawn in real time, and the program also includes an option to animate the G-matrix by drawing and 
erasing it every generation. This latter feature can be very revealing regarding the dynamics of the genetic variance-covariance structure over time.
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The second goal of the G-matrix Simulator software family is to 
allow other researchers to get started developing individual-based 
quantitative genetic simulations. Due to computational speed limita-
tions, development of these models almost always requires knowl-
edge of a high-performance, compiled programming language, such 
as C++. Models in interpreted languages, such as Python or R, will 
almost always be prohibitively slow. In addition, the development 
of the model requires multiple decisions regarding the structure of 
underlying algorithms. Thus, our second goal is to demystify this 
process. We provide the source files for the G-matrix Command Line 
Simulator and a free tutorial that documents the step-by-step pro-
cess of coding an object-oriented G-matrix simulator in C++ (Jones 
2018). This tutorial assumes no starting knowledge of C++, so it 
is suitable for anyone wishing to embark on this research avenue. 
A key step in development is to ensure that the new code base can 
replicate results of previous models, and the various simulators we 
provide here provide useful tools for this validation step.

Other Related Software
Our models are not the only ones capable of simulating the evolution 
of a phenotype composed of multiple quantitative traits. The most 
relevant similar programs are Nemo (Guillaume and Rougemont 
2006) and QuantiNemo (Neuenschwander et  al. 2008), with the 
latter built on the source code of the former. Nemo provides a flex-
ible, feature-rich programming platform with many facets that are 
not available in our family of G-matrix simulator programs. In this 
sense, the programs we present here do not compete with Nemo. 
Rather, these various programs are complementary. With respect 
to classroom instruction, our G-matrix simulators with graphical 
interfaces allow the class to hit the ground running, quickly iterating 
between modifying parameter values and seeing the results of the 
simulations. At the other end of the spectrum, for developers, the 
G-matrix Simulator Command Line source code is a much simpler 
code base compared with that of Nemo, and our tutorial assumes no 
knowledge of C++ programming. Thus, Nemo is more feature-rich 
and harder to use, but the G-matrix simulator is more accessible for 
beginners, including students interested in the G-matrix and scien-
tists new to programming. The G-matrix simulators we present here 
can be seen as a starting point, where individuals can gain some 
familiarity with the issues surrounding individual-based simulations 
and G-matrix evolution before graduating to the more sophisticated 
and powerful programming environment afforded by Nemo.

A handful of other programs possess some similarity to the 
G-matrix Simulator family of applications, but none of these other 
programs is capable of precisely replicating the approach used by Jones 
et  al. (2003, 2004, 2012). For instance, FFPopSim provides a more 

efficient method for simulating multi-locus genotypes in a forward-in-
time model (Zanini and Neher 2012) but does not serve as a replace-
ment for Nemo or the G-matrix simulators, as it does not explicitly 
model quantitative traits. Similarly, ALADYN (Schiffers et al. 2014) 
simulates a phenotype composed of 2 quantitative traits but does not 
allow pleiotropy and requires one trait’s optimum to vary spatially 
while the other trait’s optimum varies temporally. Thus, ALADYN 
cannot address precisely the same quantitative genetic scenarios imple-
mented in the G-matrix simulator models. Many other population and 
quantitative genetic simulation packages are available (see reviews by 
Hoban et  al. 2012 and Hoban 2014) but Nemo and QuantiNemo 
appear to be the only ones capable of multivariate simulations focusing 
on the G-matrix in the vein of Jones et al. (2003, 2004, 2012).

Conclusions

The G-matrix Simulator family of software applications provides a 
useful set of tools for teaching and research. These programs are 
especially useful for helping students develop intuition regarding the 
evolution of the G-matrix and quantitative traits under various evo-
lutionary scenarios. The tools can also be used to address new topics, 
to ground-truth newly developed models, and to provide budding 
developers an introduction to C++ and the design of individual-
based models of quantitative traits.
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Figure 3. An example of the results of the G-matrix drawing script in R applied to the output of G-matrix Simulator Command Line. Here, the G-matrix is drawn 
as an ellipse (with the crossbars representing the scaled eigenvectors). The G-matrix is depicted every 400 generations, and the position of the moving optimum 
is shown as a cross. In this case, the genetic correlation is not strong, so the G-matrix lags directly behind the moving optimum. One advantage of using R to 
depict the G-matrix is that the script can be modified easily to suit the needs of the user.
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