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Abstract. In quantitative genetics, the genetic architecture of traits, described in terms of variances and covariances,
plays a major role in determining the trajectory of evolutionary change. Hence, the genetic variance-covariance matrix
(G-matrix) is a critical component of modern quantitative genetics theory. Considerable debate has surrounded the
issue of G-matrix constancy because unstable G-matrices provide major difficulties for evolutionary inference. Em-
pirical studies and analytical theory have not resolved the debate. Here we present the results of stochastic models
of G-matrix evolution in a population responding to an adaptive landscape with an optimum that moves at a constant
rate. This study builds on the previous results of stochastic simulations of G-matrix stability under stabilizing selection
arising from a stationary optimum. The addition of a moving optimum leads to several important new insights. First,
evolution along genetic lines of least resistance increases stability of the orientation of the G-matrix relative to
stabilizing selection alone. Evolution across genetic lines of least resistance decreases G-matrix stability. Second,
evolution in response to a continuously changing optimum can produce persistent maladaptation for a correlated trait,
even if its optimum does not change. Third, the retrospective analysis of selection performs very well when the mean
G-matrix (Ḡ) is known with certainty, indicating that covariance between G and the directional selection gradient b
is usually small enough in magnitude that it introduces only a small bias in estimates of the net selection gradient.
Our results also show, however, that the contemporary Ḡ-matrix only serves as a rough guide to Ḡ. The most promising
approach for the estimation of Ḡ is probably through comparative phylogenetic analysis. Overall, our results show
that directional selection actually can increase stability of the G-matrix and that retrospective analysis of selection is
inherently feasible. One major remaining challenge is to gain a sufficient understanding of the G-matrix to allow the
confident estimation of Ḡ.
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The G-matrix plays a central role in quantitative theory
for the evolution of continuously distributed traits that are
affected by many genes. This matrix (with additive genetic
variances on its main diagonal and additive genetic covari-
ances elsewhere) describes the dispersion of genetic values
within populations. The G-matrix profoundly affects the pop-
ulation’s ability to respond to selection and its vulnerability
to genetic drift (Lande 1979). It can be used to assess the
population’s capacity to evolve in response to selection, re-
construct historical patterns of selection, and test genetic drift
as a null model for differentiation. In all of these contexts,
stability of the G-matrix is an important but unresolved prob-
lem. Because the G-matrix is bound to fluctuate in a popu-
lation of finite size (Lande 1979), the question of stability
does not have a simple yes or no answer. Instead we must
consider a set of more subtle issues. What types of quanti-

tative characters have relatively stable G-matrices and over
what time scale? How much are evolutionary inferences af-
fected by systematic and random changes in the G-matrix?

Slow progress toward a resolution of the issue of G-matrix
stability is primarily a result of theoretical limitations. The
theoretical characterization of the G-matrix after it has equil-
ibrated under a static regime of selection, mutation, and re-
combination has only been achieved under various sets of
simplifying assumptions, beyond assumptions of additivity,
linkage equilibrium, and infinite population size. Analytical
approximations for the magnitude of the constituent variances
and covariances at mutation-selection balance have been ob-
tained by assuming a multivariate Gaussian distribution of
allelic effects (Lande 1980a); assuming that mutational ef-
fects are much larger than the standing genetic variation,
leading to a pleiotropic house-of-cards approximation (Tur-
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elli 1985); and assuming a certain model of constrained pleio-
tropic effects (Wagner 1989). For finite populations, no the-
oretical predictions for the multivariate case have yet been
derived. In addition, we do not have equations for the gen-
eration-by-generation dynamics of the evolving G-matrix,
except under very special assumptions, such as Bulmer’s in-
finitesimal model (Turelli 1985). Even in the case of a single
character, these issues are fairly complex, and it has been
shown that the dynamics of the genetic variance depends on
the higher moments of the distribution of allelic effects as
well as on other genetic details (Turelli and Barton 1990;
Bürger 2000). Consequently, we cannot predict how much
the G-matrix will wobble and fluctuate due to the interaction
of genetic drift with selection, mutation, and recombination,
even if the adaptive landscape remains constant. For all these
reasons, the stability of the G-matrix has been viewed as an
empirical issue (Turelli 1988; Steppan et al. 2002).

The empirical investigation of G-matrix stability is also
plagued by limitations. The empirical studies have been by
comparison of matrices sampled from nature or from exper-
imental lines. A strength of comparing matrices from natural
populations is that the results are likely to reflect responses
under natural conditions. The histories of selection and pop-
ulation size may be unknown, but at least they are represen-
tative of the real world. A limitation in nonexperimental work
is that usually only two or three matrices are available for
comparison, because of the difficulty of assembling the large
samples of families needed to estimate G. Nevertheless, com-
parative work of this kind has revealed some intriguing re-
sults. Although G-matrices can differ appreciably, especially
among distantly related species or populations (Kohn and
Atchley 1988; Paulsen 1996), they often show conserved
aspects of structure (Arnold 1981; Arnold and Phillips 1999;
Roff and Mousseau 1999). In particular, the eigenvectors
(principal components) of the matrix often are conserved
even though eigenvalues vary. What accounts for this con-
servation? On the experimental side, G-matrices have been
compared after separate lines have been exposed to deliberate
directional selection or allowed to drift. A strength of this
approach is that selection is imposed and population size is
known. A limitation is that stabilizing, stability-conferring
aspects of selection may be missing and the force of direc-
tional selection may be far stronger than is typical in nature.
Given these probable departures from selection regimes in
nature, the result that experimental lines sometimes show
similar G-matrices is particularly surprising (Wilkinson et
al. 1990; Shaw et al. 1995). Experiments have also estab-
lished that the G-matrix can wobble, that is, inflate and con-
tract in the absence of selection, especially in small popu-
lations (Phillips et al. 2001). While computer simulations of
evolving G-matrices do not solve all of the problems that
plague empirical comparisons, they do offer a complementary
approach to the problem of G-matrix stability.

The goal of this article is to extend past simulation work
on the evolution of the G-matrix. Several studies have used
a simulation-based approach to study various aspects of mul-
tivariate quantitative trait evolution (Wagner 1989; Baatz and
Wagner 1997; Wagner et al. 1997; Reeve 2000; Jones et al.
2003), but only one has focused specifically on G-matrix
stability (Jones et al. 2003). In that study, we examined the

evolution and stability of the G-matrix in response to a sta-
bilizing adaptive landscape that is constant in configuration
and position (Jones et al. 2003). We chose a stabilizing land-
scape because this form of selection is often found in em-
pirical studies (Lynch 1989; Kingsolver et al. 2001) and is
the mode of selection that best accounts for conservatism in
morphology and long-term stasis in phenotypic traits (Simp-
son 1944; Schmalhausen 1949; Charlesworth et al. 1982).
One of our main findings was that different aspects of stability
react differently to selection, mutation, and drift. In partic-
ular, we found that correlational selection, pleiotropic mu-
tation, and large population size promoted stability of the
orientation of the G-matrix. In contrast, stability in the overall
size and shape of the G-matrix was increased only by pop-
ulation size. In the present study we allow the adaptive peak
to move while the landscape itself maintains a constant con-
figuration. This model of selection may correspond to tem-
poral change in the environment or the invasion of a new
adaptive zone (Simpson 1944, 1953). The present explora-
tions are limited, however, to movement of the peak at a
constant speed. The main question that concerns us is how
different aspects of G-matrix stability respond to the speed
and direction of peak movement. A secondary goal is to
determine the degree to which stochastic variation in the G-
matrix affects evolutionary inferences.

Stochastic variation in G carries important implications
for evolutionary inference, because of the central role that
the G-matrix plays in equations for evolutionary change. If
fluctuations in G were relatively minor, one could ignore
variation in G and use an estimate of average G to make
evolutionary inferences. In this spirit, a single value or an
average value of G has been used to make predictions about
genetic drift, predict potential responses to selection, or re-
construct historical patterns of directional selection (Lande
1979; Price and Grant 1985; Cheverud 1996). Reconstruc-
tions of historical selection have relied on Lande’s (1979)
expression for the net directional selection gradient, but fluc-
tuation and evolution of the G-matrix might add considerable
barriers to success in this endeavor (Turelli 1988; Shaw et
al. 1995). We assess the impact of systematic and stochastic
variation in the G-matrix on the estimation of the net direc-
tional selection gradient. This assessment will take us one
more step toward understanding whether instability of G is
likely to have important effects on this and other kinds of
evolutionary inference.

Theoretical Background

Some theoretical results will be useful in understanding our
simulations and interpreting our results. We consider two phe-
notypic characters that evolve in response to a Gaussian adap-
tive landscape with a moving optimum. The population mates
randomly and has discrete generations. Viability selection is
imposed by a Gaussian individual selection surface such that
the fitness of individuals with phenotype z is given by

T 21W(z) } exp[(z 2 u) v (z 2 u)], (1)

where z is the column vector of trait values, v is the matrix
of coefficients that describe the strengths of stabilizing and
correlational selection, u is the position of the optimum, and
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T denotes transposition. We assume that the optimum u 5
ut, where the subscript t indicates the generation, changes at
a constant rate and in a given (constant) direction Du 5
(Du1,Du2)T that is, ut11 2 ut [ Du.

We denote the distribution of phenotypes by p(z), its mean
by z̄, and its variance-covariance matrix before selection by
P. In this, and only this, section, we assume that p(z) is
multivariate normal. Following the classical additive model
of quantitative genetics, we assume that P 5 G 1 E, where
G is the genetic covariance matrix (the G-matrix for short),
E is the covariance matrix of environmental effects (which,
by an appropriate linear transformation, may be assumed to
have entries 1 on its diagonal and 0 elsewhere). Because
genotype-environment interaction is ignored, the mean phe-
notypic vector z̄ equals the vector of mean breeding (geno-
typic) values.

Mean fitness in the population is given by the (multivar-
iate) integral W̄ 5 # W(z)p(z)dz. Corresponding to the indi-
vidual selection surface W(z), there is an adaptive landscape
that affects the evolution of the phenotypic mean z̄ and, in
general, the whole population distribution. This landscape
describes W̄ as a function of z̄. Because p(z) is Gaussian, the
population’s fitness landscape W̄ is again Gaussian with op-
timum u and with shape parameters given by the matrix v
1 P (Lande 1979). The force of the directional selection on
the traits can be described by the directional selection gra-
dient,

T¯ ¯] ln W ] ln W¯b 5 ¹ ln W 5 , , (2)1 2]z̄ ]z̄1 2

where ¹ denotes the gradient operator of partial derivatives
with respect to the single-trait means (Lande 1979). The de-
terministic response of the mean z̄ to selection is not in the
direction of steepest uphill slope, which is given by b. Instead
the population mean evolves in a direction given by

Dz̄ 5 Gb (3)

(Lande 1979). It is important to note that equation (3) is only
an approximation because it assumes multivariate normality
of the phenotypic distribution. For a discussion of the much
better understood univariate case see Bürger (2000, pp. 193–
197). However, equation (3) does not require that G or b are
constant in time.

A population evolving in response to a moving adaptive
landscape will experience directional selection and lag behind
the moving peak (Lynch et al. 1991). In the case of a pop-
ulation reacting to a moving Gaussian adaptive landscape
that has a constant shape, the force of directional selection
in any given generation t is proportional to the deviation of
the phenotypic mean from the peak of the landscape,

21b 5 (v 1 P ) (u 2 z̄ ),t t t t (4)

where Pt is the phenotypic variance-covariance matrix before
selection in generation t (Lande 1980b). An evolving pop-
ulation may lag substantially behind and away from the mov-
ing optimum. In the case of an infinitely large population
that has equilibrated with the moving peak, that is, in the
absence of stochastic fluctuations, the expected lag is given
by the vector

21L 5 u 2 z̄ 5 (v 1 P)G Dut t (5)

(for t sufficiently large), where Du is the per generation
change in the position of the optimum. This expression gen-
eralizes the univariate approximation of Lynch and Lande
(1993). Such a population will lag directly behind the moving
optimum when G is proportional to v 1 P, so that the first
two terms on the right side of expression (5) cancel. In gen-
eral, instead of following directly behind the moving opti-
mum, the phenotypic mean will trail to one side of the op-
timum (a flying-kite effect, see below) when there is strong
correlational selection but no genetic correlation, or strong
genetic correlation but no correlational selection. Thus, the
shape of the adaptive landscape, in conjunction with the G-
matrix, affects the degree to which the phenotypic mean lags
behind the moving optimum, the direction of the lag, as well
as the magnitude of directional selection that arises from that
lag.

In a finite population, z̄t, G, and P will fluctuate. Starting
with equation (4) and applying (3), while ignoring covariation
between Gt and z̄t and variation of v 1 Pt (which is likely
to be appropriate because v is much larger than Pt), we have
instead of (5) the approximation

21¯ ¯E (u 2 z̄ ) 5 (v 1 P)G Du,t t t (6)

where Et indicates expectation with respect to time, and Ḡ
and P̄ denote the expected values of G and P with respect
to time.

Lande (1979) introduced the net (directional) selection gra-
dient,

T21
21¯b [ b 5 G Dz̄ , (7)OT t T

t50

as a retrospective measure of selection that is robust to change
in the rate and direction of evolution. In (7), Ḡ is the average
G-matrix over the interval from generation 0 to generation
T 2 1, and Dz̄T 5 z̄T 2 z̄0, the net change in the mean. For
simplicity we will refer to bT as net-b. When Dz̄T represents
the difference between the multivariate phenotypic means of
two contemporary populations, this expression can be used
to estimate the minimum amount of directional selection that
is required to produce that differentiation (Lande 1979; Price
et al. 1984; Schluter 1984; Price and Grant 1985; Lofsvold
1986; Arnold 1988; Pessoa and Reis 1991; Cheverud 1996).

Turelli (1988) argued that stochastic fluctuations in the G-
matrix will lead to inaccuracy in estimating the net-b with
the above expression. The source of inaccuracy is revealed
in an expression that takes into account variation in G

T21
21¯ ¯b 5 G Dz̄ 2 (G 2 G)b , (8)OT T t t[ ]t50

where Gt represents the G-matrix in generation t (Turelli
1988). The summation term on the right is proportional to
the covariance between the G-matrix and the net selection
gradient in the same generation. Turelli argued that large
fluctuations in selection might cause this summation term to
be relatively large even though fluctuations in G might be
small. On the other hand, because selection in generation t
will affect the G-matrix in generation t 1 1, rather than in
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generation t, one could argue that the summation term will
be large only if there is autocorrelation in bt (R. Lande, pers.
comm.). One of our goals is to assess the size of Turelli’s
summation term and hence to evaluate the effect of stochastic
variation in G on the estimation of net-b.

METHODS

The Simulation Model

The simulation-based model of multivariate evolution that
we use in this study is a modification of the model used by
Jones et al. (2003). These multivariate models are direct ex-
tensions of the univariate models employed by Bürger et al.
(1989), Bürger and Lande (1994), and Bürger and Lynch
(1995). In brief, we used a Monte Carlo approach to simulate
a population of diploid, sexually reproducing organisms with
two evolving quantitative traits. The life cycle consisted of:
(1) production of progeny, including mutation and recom-
bination; (2) viability selection; and (3) random selection of
N adults from the survivors of selection. Viability selection
was produced according to a Gaussian individual selection
surface, such that the probability of survival of phenotype z,
W(z), was given by

T 21W(z) 5 exp[20.5(z 2 u) v (z 2 u)]. (9)

We imposed directional selection by changing the values of
u at a constant rate over multiple generations of evolution.
The mating system was monogamous and each breeding pair
produced exactly four offspring. Under these circumstances,
the effective population size is larger than the census pop-
ulation size. We used population sizes of 256, 512, 1024,
and 2048, which corresponded to effective population sizes
of 342, 683, 1366, and 2731 (Bürger and Lande 1994; Jones
et al. 2003).

The two traits used in the simulations were determined by
50 pleiotropic, freely recombining, additive loci, which we
modeled explicitly. Thus, the mutation of a particular allele
changed its effects on both traits. These mutational effects
were drawn randomly from a bivariate Gaussian distribution
and added to the existing values of the allele, according to
the continuum of alleles model (Crow and Kimura 1964).
We focus on a Gaussian distribution of mutational effects,
because the Gaussian distribution is the foundation of modern
quantitative genetics. However, empirical evidence suggests
that real mutations may not follow a Gaussian distribution,
so other distributions of mutational effects warrant attention
in future studies (Hill and Caballero 1992; Mackay et al.
1992). Nevertheless, we predict that our results will be robust
to changes in the underlying distribution, given the small
discrepancies in results produced by Gaussian and gamma
distributions of mutational effects in the univariate case in-
vestigated by Bürger and Lande (1994). We used a distri-
bution of mutational effects with means of zero, variances
of and , and a correlation of rm. This mutational cor-2 2a a1 2
relation, rm, describes the extent to which the mutational ef-
fects are correlated. For example, when rm is positive, a mu-
tation that increases an allele’s effect on one trait will usually
also increase its effect on the other trait. An individual’s
phenotype was determined by summing additive effects
across loci and adding environmental variation, drawn from

a Gaussian distribution with a mean of zero and a variance
of one. For additional details on the basic model and its
application to G-matrix stability under stabilizing selection,
see Jones et al. (2003).

Our choice of parameter values starts with the parameters
used in Jones et al. (2003) and Bürger and Lande (1994). In
particular, we assume in the base model (i.e., unless otherwise
noted) that each trait is determined by 50 unlinked pleiotropic
loci, that the mutation rate (m) is 0.0002 per haploid locus,
that the variances of mutational effects ( and ) are 0.05,2 2a a1 2
and that the population size is 256 adults. Under most cir-
cumstances, the selection surface is rather shallow, with v11
5 v22 5 49. We allow the mutational correlation (rm) to vary
from 0.00 to 0.90 and the selectional correlation (rv) from
20.90 to 0.90.

The Moving Optimum

This study differs from the study described in Jones et al.
(2003) in that we now allow the optimum to move, such that
the population experiences directional selection in addition
to the stabilizing selection modeled previously. The addition
of a moving optimum adds several complications and param-
eters to the study. Clearly, the bivariate optimum might move
in any direction and at any rate, so we confine our attention
to a few interesting, representative cases. In one case the
optimum of the first trait changes, while the other trait’s
optimum remains constant. This situation is most easily vi-
sualized as movement to the right (1) on a graph with the
value of trait one on the x-axis and the value of trait two on
the y-axis. We will also refer to this situation to movement
of the optimum at an angle of 08. In a second interesting
case, both traits increase in value at the same rate, such that
the optimum moves at a 458 angle (3). In the third case that
we explore in this study, the first trait increases in value while
the second trait decreases in value at the same rate, and the
optimum consequently moves along an angle of 2458 (5).

The rate at which the optimum moves is also an important
consideration. In this study, we assume that the optimum
moves at a constant rate, but that other features of the adaptive
landscape (i.e., v) remain constant. We have chosen a modest
rate of movement under which the population can persist for
long periods of time under any set of parameters that we
investigate. The maximum rate of movement that we inves-
tigate is 0.01 units of environmental standard deviation per
generation. For our most commonly used population size of
256, this rate of movement translates into approximately
0.008 haldanes or phenotypic standard deviations per gen-
eration. This rate is slightly faster than the geometric mean
rate (0.0058) observed in a large sample of microevolutionary
studies (Kinnison and Hendry 2001). When the optimum
moves at angles of either 458 or 2458, we use magnitudes
of per generation change for each trait of 0.01/( ), so thatÏ2
the geometric distance that the bivariate optimum moves is
independent of the angle. We also performed a number of
simulations with an optimum moving at a 10-fold slower rate.
In those simulations the types of effects were qualitatively
the same as in the simulations with a faster moving optimum
but smaller in magnitude, so we do not present the results
of those analyses.
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We choose in the present study to use an optimum moving
at a constant rate because it allows the population to achieve
quasi-equilibrium between selection, drift, and mutation.
From a genetically uniform starting population, we allow
10,000 generations for genetic variation to become estab-
lished and equilibrate under stabilizing selection with a sta-
tionary optimum, followed by a period of 2000 generations
of evolution under a moving optimum to allow for equili-
bration under that selection regime. These initial 2000 gen-
erations of selection under a moving optimum are followed
by 2000 generations during which we tally genetic parameters
each generation. These last 2000 generations are the exper-
imental generations. Selection under an optimum moving at
a constant rate is probably a more favorable scenario for G-
matrix stability than short periods of intense directional se-
lection followed by stabilizing selection (Turelli 1988). How-
ever, an optimum moving at a constant rate is more tractable
from a modeling standpoint and consequently it is the first
logical step in the exploration of changing selection regimes.
The effects of periods of strong directional selection or an
adaptive landscape with a changing shape would be worthy
topics for future studies that build on the results that we
present here.

Measures of G-matrix Stability, Lag, Net-b, and the
Turelli Effect

During the evolution of the population and its G-matrix
under a moving optimum, we tally numerous variables that
relate to G-matrix stability, the lag of the population mean
relative to the bivariate optimum, the actual and reconstructed
values of net-b, and Turelli’s summation term. The values
of these various quantities provide insights into the stability
of the G-matrix over evolutionary time and the reconstruction
of the history of selection. First, we calculate the same values
presented in the study of G-matrix stability by Jones et al.
(2003). Every generation, we calculate the elements of the
phenotypic variance-covariance matrix (P11, P22, P12) and the
G-matrix (G11, G22, G12), the genetic correlation (rg), and the
eigenvalues of the G-matrix (l1 and l2). We also calculate
the size (S), eccentricity (e), and angle (w) of the G-matrix
(for definitions see Jones et al. 2003 or table footnotes). For
all values presented in this paper, we calculate the mean
across generations within an experimental run (N 5 2000)
and then present the means of these means across replicate
runs (N 5 20). Previous studies of this kind indicate that this
approach seems to be appropriate on both empirical and the-
oretical grounds (Bürger et al. 1989; Bürger and Lande 1994;
Jones et al. 2003). As an indication of G-matrix stability, we
also calculate the single-generation changes in population
variables (for additional details see Jones et al. 2003).

During the evolution of the simulated population, we can
calculate both theoretical and realized lags relative to the
optimum. Here, we represent the lags for the two traits as L1
and L2. The actual lag is simply the optimum minus the trait
mean. We calculate these lags each generation and take the
mean across generations to give the average lag for a par-
ticular run of the simulation. Values in the tables are means
across 20 runs. The theoretical lag can be calculated accord-
ing to equations (5) and (6). We calculate theoretical lags in

two ways. First we calculate the theoretical lag each gen-
eration, using the corresponding G-matrix from that gener-
ation and then calculate the mean as we would do for the
actual lag. In the second approach, we calculate the lag once
at the end of each run, using the mean G-matrix for the entire
simulation run.

One central goal of this study is to evaluate the impact of
G-matrix stability or instability on the reconstruction of net-
b in a retrospective analysis of selection. To accomplish this
goal, we need to estimate b directly each generation. We use
two approaches to estimate b. We use equation (4), and we
use a multiple regression of relative fitness on trait values as
outlined by Lande and Arnold (1983). Both techniques yield
essentially identical estimates of b, so we use the more exact
method given by equation (4) in our analyses. By calculating
b each generation and summing across generations, we can
obtain a direct estimate of net-b for each run of the simu-
lation. We also obtain estimates of net-b from retrospective
selection analysis based on equation (3), using G from four
different sources. First, we use Ḡ, the average G-matrix over
all experimental generations. Second, we use GT, the con-
temporary G-matrix. Third, we use the mean of the last two
G-matrices, GT and G(T21). Finally, we use the mean of the
last five G-matrices, GT through G(T24).

In the interest of understanding the complications arising
during the retrospective analysis of selection, we also cal-
culate Turelli’s potentially confounding summation term
(Turelli 1988; Shaw et al. 1995). This so-called Turelli effect,
t, is a column vector calculated according to equation (8).
Rearranging equation (8) slightly, we define the Turelli effect
as the summation term multiplied by the inverse of Ḡ, such
that

T21
21¯ ¯t 5 G (G 2 G)b , (10)O t t

t50

so that it is directly comparable in magnitude to the estimate
of net-b. Thus, we can rewrite equation (8) as

21¯b 5 G Dz̄ 2 t.T T (11)

Clearly, the Turelli effect has the potential to cause inac-
curacies in the estimation of net-b, and our intent was to
investigate the expected magnitude of this term.

RESULTS

We begin by presenting the results of the effects of peak
movement on the stability properties of the G-matrix and
comparing them with the main results of our previous study
(Jones et al. 2003) of the effects of stabilizing selection to-
ward a stationary optimum. Then we study the effects of peak
movement on the size and shape of the G-matrix and on the
evolution of the (bivariate) phenotypic mean. Finally, we
explore the relationship between the net selection gradient
(net-b) and the direction of peak movement as well as prob-
lems associated with the reconstruction of the net-b from
data on the final generations of evolution.

G-Matrix Stability

In Jones et al. (2003), we showed that simple conditions
for the stability properties of a (two-dimensional) G-matrix
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TABLE 1. Average single-generation changes in the G-matrix under a moving optimum. The following parameters are fixed: Ne 5 342,
m 5 0.0002 per locus per generation, 5 5 0.05, and v11 5 v22 5 49. See the text for further details and definitions of symbols.2 2a a1 2
The values of DG11, DG22, Dl1, Dl2, DS, and De have been standardized by dividing by their means (see Table 2 for means), whereas
DG12, Drg, and Dw are not standardized. Arrows indicate the direction of peak movement (Du), such that 3 means that Du1 5 Du2 5
0.007071, 1 means that Du1 5 0.01 and Du2 5 0, 5 means that Du1 5 0.007071 and Du2 5 20.007071, and ● means that Du1 5 Du2
5 0. Only means are shown in this table, but the standard deviations are typically much smaller than the means.

rv rm Du DG11 DG22 DG12 Drg Dl1 Dl2 DS De Dw

0
0
0
0

0
0
0
0

●
3
1
5

0.072
0.072
0.072
0.072

0.072
0.072
0.071
0.072

0.023
0.025
0.025
0.026

0.050
0.049
0.049
0.049

0.071
0.070
0.070
0.070

0.072
0.071
0.071
0.071

0.05
0.05
0.05
0.05

0.10
0.10
0.10
0.10

9.67
10.08

9.85
9.92

0.75
0.75
0.75
0.75

0
0
0
0

●
3
1
5

0.073
0.072
0.071
0.073

0.073
0.072
0.072
0.072

0.018
0.022
0.023
0.023

0.047
0.046
0.048
0.049

0.071
0.071
0.071
0.071

0.073
0.072
0.072
0.072

0.05
0.05
0.05
0.05

0.10
0.10
0.10
0.10

6.54
6.42
7.66
9.55

0
0
0
0

0.5
0.5
0.5
0.5

●
3
1
5

0.073
0.072
0.072
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can be established if it is described by its total size S, the
shape parameter e, and the orientation w. Correspondingly,
stability is measured by the average between generation
changes DS, De, and Dw. The main results of that paper were
that size and shape stability are promoted chiefly by large
population size, whereas orientation stability is promoted by
correlational selection, large population size, and especially
by mutational correlation and the alignment of pleiotropic
mutation and multivariate selection.

Table 1 presents results for a small subset of the parameter
combinations for which we explored G-matrix stability. We
examined three different conditions of peak movement,
which are indicated by arrows in Table 1 (i.e., 3, 1, and 5.
The absolute rate of movement is the same in all three cases
(see the legend of Table 1). We also present results from the
stationary optimum (●) for comparison (Table 1). Exami-
nation of the data in Table 1 shows that peak movement has
virtually no effect on the stability of quantities measuring
the size of G (DG11, DG22, Dl1, Dl2, and DS) or on the
stability of its shape (De). There are, however, weak to mod-
erate effects on the stability of the covariance and correlation
(DG12 and Drg), and, in particular, on the orientation (Dw).
The strongest effects of peak movement on Dw (a decrease
in stability) occur if rv 5 0.75 and rm 5 0, when movement
is at 2458 (5), which is perpendicular to the direction favored
by correlational selection. Under these circumstances, the
peak is moving across rather than along genetic lines of least
resistance (Schluter 1996). If rv 5 0 and rm 5 0.5, then
movement in the direction favored by mutational correlation
(i.e., 3, along genetic lines of least resistance) increases sta-
bility. These conclusions have been confirmed by many more
parameter combinations (results not shown). Overall, our re-
sults indicate that the particular combination of rv and rm has

(nearly) no effect on DG11, DG22, Dl1, Dl2, and De, but it
does affect DG12, Drg, DS, and, very strongly, Dw.

The effects of the interplay of selectional and mutational
correlation on the stability of the orientation (Dw) are doc-
umented in Figure 1. The three panels correspond to the three
different directions of peak movement studied (3, 1, and
5). Each panel displays the change in the orientation of the
G-matrix as a function of the selectional correlation rv for
five different values of rm. This figure clearly shows that
independently of the direction of the peak movement, for
positive mutational correlation the between-generation
change of the angle, Dw, always decreases with increasing
selectional correlation unless the mutational correlation is
very weak. In other words, mutational and selectional cor-
relations of different signs lead to instability of the orien-
tation. Without mutational correlation, an increase in selec-
tional correlation, positive or negative, tends to increase sta-
bility of the orientation. However, this increase is much more
pronounced if the optimum moves along lines of least genetic
resistance (which is the direction of the leading eigenvalue
of the selectional covariance matrix v, i.e., the direction fa-
vored by correlational selection; Schluter 1996). By contrast,
high positive (or negative) rv has almost no stabilizing effect
if the optimum moves in the perpendicular direction. Of
course, rv has little stabilizing effect when the angle is already
stable due to high mutational correlation. Figure 1 also dem-
onstrates that, as under pure stabilizing selection (see fig. 1
of Jones et al. 2003), mutational correlation is much more
important in producing stability than correlational selection.

Figure 2 displays the effects on the stability of the ori-
entation w of the population size, unequal mutational vari-
ances, and unequal strength of stabilizing selection on the
two traits. In each of the panels, the three different directions
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FIG. 1. The interplay of mutational and selection matrix alignment
and direction of peak movement on stability of the angle (w) of the
G-matrix. This figure shows the average single-generation change
in the G-matrix angle in a population of size Ne 5 342, with various
values of mutational and selectional correlations. Other parameters
are the same as in Table 1. The top panel shows results for a
bivariate optimum moving up and to the right (3; both traits in-
creasing), the middle panel shows results for an optimum moving
to the right (1; trait one increasing, trait two stationary), and the
bottom panel shows results for an optimum moving down to the
right (5; trait one increasing, trait two decreasing).

FIG. 2. The effects of population size, mutational variance, and
unequal strengths of selection on the two traits on G-matrix sta-
bility. Different symbols represent different directions of peak
movement as shown in the legend. The closed circles represent
stabilizing selection only (no peak movement). In all cases, the
mutational correlation (rm) is zero. All other parameters are the same
as those used in Table 1, except as shown in the panels of this
figure. The top panel shows the stabilizing influence of population
size on the G-matrix. In the middle panel, the mutational variance
for trait one ( ) is held constant at 0.05, while the mutational2a1
variance for trait two ( ) varies from 0.01 to 0.2. In the bottom2a2
panel, the strength of selection on trait one (v11) is held constant
at 49, while the strength of selection on trait two (v22) is allowed
to vary from four to 99.
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of peak movement (3, 1, and 5) are compared with the
stationary optimum case. Most conspicuously, with a moving
peak the stability properties of the orientation do not change
qualitatively relative to a stationary one; however, there are
quantitative effects. The upper panel demonstrates that in-
creasing population size has a strong stabilizing effect on the
orientation, and peak movement along the lines of least ge-
netic resistance (in direction 3 in this case) has a slight
stabilizing effect relative to a stationary peak, whereas peak
movement perpendicular to that direction (5) has a distinc-
tive destabilizing effect. The middle panel shows that unequal
mutational variances ( deviating from 5 0.05) have a2 2a a2 1
strong stabilizing effect on w. Trivially, in the absence of
mutational variance (for one of the traits), any variation in
w vanishes. The third panel shows that increasing strength
of stabilizing selection on the second trait always promotes
stability of the orientation, the effect being most distinctive
for a stationary optimum and an optimum moving only in
direction of the first trait.

As for pure stabilizing selection, stability in size and shape
are strongly enhanced by increasing population size, whereas
other parameters have little effect (results not shown).

In summary, relative to a stationary optimum, a moving
optimum has virtually no effects on the stability of the size
S of the G-matrix nor on its shape e, whereas it may stabilize
or destabilize G-matrix orientation, w. The stabilizing effect
is most pronounced if the optimum moves along lines of least
genetic resistance (e.g., the optimum moves in direction 3
if rv is highly positive). Peak movement perpendicular to that
direction has a destabilizing effect. Thus, the main conclusion
of our previous study about G-matrix stability under stabi-
lizing selection remain valid under directional selection
caused by a moving optimum, nearly regardless of the di-
rection and rate of movement; only a few new complimentary
conditions have emerged. As for a stationary optimum, the
most distinctive patterns are observed if the G-matrix is de-
scribed by the parameters S, e, and w.

Effects of Peak Movement on the Magnitude and Shape of G

Table 2 shows that peak movement always increases the
size measures G11, G22, l1, l2, and S. This is in analogy to
the univariate case (Bürger and Lynch 1995; Bürger 1999)
and, presumably, caused by directional selection pushing fa-
vorable new alleles to fixation. During such selective sweeps,
the genetic variance is substantially elevated, unless the pop-
ulation size is very small. We see this effect on both traits
because pleiotropic mutations typically affect both traits,
even in the absence of an average genetic correlation (for
related phenomena arising in different models of pleiotropic
selection, see Turelli 1985; Wagner 1989; Baatz and Wagner
1997). Also G12 sometimes increases, in particular if rm is
not too small, although this does not necessarily translate
into an elevated genetic correlation rg. However, in the ab-
sence of mutational correlation, G12 may also be decreased
if the optimum moves orthogonal to the direction favored by
correlational selection (rv 5 0.75 and direction 5). The ge-
netic correlation rg is little affected by peak movement, unless
rm 5 0 and rv 5 0.75, when peak movement orthogonal to
the direction favored by correlational selection leads to a

substantial reduction. In general, the effects of peak move-
ment on the shape parameter e are very weak, except for a
slight tendency of increasing e (reducing eccentricity) if the
direction of peak movement deviates from those favored by
correlational mutation and/or selection. Also the orientation
w is nearly unchanged by peak movement except for the case
rm 5 0 and rv 5 0.75. Then, w decreases if the optimum
moves in a direction deviating from that favored by corre-
lational selection.

Effects of Peak Movement on the Phenotypic Mean

Peak movement induces directional selection on the pop-
ulation, causing the vector of phenotypic means, z̄ 5 (z̄1, z̄2),
to evolve at the same rate as the optimum but lagging behind
it. Eventually, unless mean fitness becomes so low that the
population goes extinct (cf. Bürger and Lynch 1995), a kind
of dynamical stationary state is attained in which the phe-
notypic mean deviates from the optimum by a constant av-
erage amount u 2 z̄ 5 (u1 2 z̄1, u2 2 z̄2)T 5 (L1, L2)T.
Fluctuations about this mean occur because of random ge-
netic drift and random mutations. Direction and amount of
this lag depend on the direction and rate of peak movement,
on the strength and correlation of the fitness landscape, and
on the genetic properties of the population. Table 2 presents
numerical data, and Figure 3 visualizes the most important
effects. In all panels of Figure 3, the optimum moves in
direction of the first trait and the second trait is under pure
stabilizing selection (i.e., the direction of movement is 1).
The top panel shows that in the absence of selectional and
mutational correlation, the mean of the first trait lags behind
the optimum, whereas the mean of the second trait fluctuates
randomly and without bias around u2 5 0. Also orientation
and shape of the G-matrix fluctuate substantially (for quan-
tifications, see Table 1). The first and second panels of the
figure show that, in the absence of mutational correlation,
increasing correlational selection induces a systematic neg-
ative deviation of the mean of the second trait, z̄2, from its
optimum u2 5 0 (see Table 2, but note that a negative de-
viation from the optimum means a positive lag). The stabi-
lizing effect on the orientation w is also clearly visible (see
Table 1). In contrast, in the absence of selectional correlation,
increasing mutational correlation induces a large systematic
positive deviation of z̄2 from its optimum u2 5 0. Also the
first traits develops a much larger lag, and a dramatic sta-
bilization of the orientation and the shape of the G-matrix
occurs (see Tables 1, 2 for quantifications). We call this the
flying-kite effect. The stronger the mutational covariance, the
higher the kite flies. However, as the bottom panel shows,
strong correlational selection decreases the height at which
the kite flies, possibly decreasing it to a small negative value.
When the kite flies high, these large deviations of the mean
phenotype z̄ from its optimum u induce such a large reduction
in mean fitness that populations with relatively low repro-
ductive potential become extinct.

Figure 4 shows the quantitative effects of increasing values
of mutational and selectional correlations on the lag. As the
selectional correlation increases, in the absence of mutational
covariance, the lag of the first trait changes very little, where-
as the lag of the second trait increases. As the mutational
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Ḡ

0 0 0 0

0 0 0 0

● 3 1 5

0.
47

5
0.

50
1

0.
51

5
0.

53
0

0.
43

2
0.

50
4

0.
46

5
0.

50
8

0.
00

6
0.

00
1

0.
01

1
2

0.
02

2

0.
01

4
2

0.
00

1
0.

01
9

2
0.

03
8

0.
56

0.
61

0.
60

0.
64

0.
35

0.
39

0.
38

0.
40

0.
91

1.
00

0.
98

1.
04

0.
65

0.
65

0.
64

0.
65

0.
8

2
0.

4
1.

9
2

8.
1

0.
00

0.
77

1.
06

0.
72

2
0.

02
0.

77
2

0.
03

2
0.

77

0.
00

0.
81

1.
12

0.
74

0.
00

0.
81

2
0.

02
2

0.
76

0.
00

0.
73

1.
00

0.
66

0.
00

0.
72

2
0.

02
2

0.
69

0.
75

0.
75

0.
75

0.
75

0 0 0 0

● 3 1 5

0.
36

5
0.

41
7

0.
46

9
0.

45
1

0.
34

5
0.

43
4

0.
41

9
0.

45
9

0.
09

1
0.

10
4

0.
07

4
0.

04
5

0.
24

4
0.

23
4

0.
15

9
0.

09
3

0.
47

0.
56

0.
57

0.
56

0.
24

0.
29

0.
32

0.
35

0.
71

0.
85

0.
89

0.
91

0.
54

0.
55

0.
59

0.
63

36
.7

37
.8

25
.0

18
.3

0.
01

1.
32

1.
09

0.
31

0.
01

1.
31

0.
69

2
0.

22

0.
00

1.
33

1.
10

0.
29

0.
00

1.
32

0.
70

2
0.

24

0.
00

1.
20

0.
99

0.
25

0.
00

1.
19

0.
63

2
0.

22

0 0 0 0

0.
5

0.
5

0.
5

0.
5

● 3 1 5

0.
42

4
0.

50
0

0.
51

6
0.

48
1

0.
42

3
0.

48
0

0.
46

5
0.

48
4

0.
18

1
0.

24
2

0.
21

8
0.

20
7

0.
43

0
0.

48
8

0.
44

3
0.

42
3

0.
62

0.
74

0.
73

0.
70

0.
23

0.
24

0.
26

0.
26

0.
85

0.
98

0.
98

0.
96

0.
38

0.
34

0.
37

0.
39

44
.4

43
.7

41
.2

45
.0

2
0.

01
0.

52
1.

34
1.

42

0.
00

0.
55

2
0.

61
2

1.
35

0.
00

0.
53

1.
39

1.
47

0.
00

0.
57

2
0.

66
2

1.
45

0.
00

0.
49

1.
24

1.
32

0.
00

0.
51

2
0.

58
2

1.
31

0.
75

0.
75

0.
75

0.
75

0.
5

0.
5

0.
5

0.
5

● 3 1 5

0.
38

8
0.

49
1

0.
49

8
0.

50
8

0.
40

3
0.

48
6

0.
46

1
0.

50
5

0.
21

9
0.

28
5

0.
25

3
0.

26
3

0.
54

6
0.

57
7

0.
51

3
0.

49
9

0.
62

0.
78

0.
74

0.
78

0.
17

0.
19

0.
22

0.
23

0.
79

0.
98

0.
96

1.
01

0.
29

0.
26

0.
32

0.
33

45
.9

44
.7

42
.4

45
.5

0.
00

0.
89

0.
95

0.
43

2
0.

01
0.

90
0.

32
2

0.
41

0.
00

0.
90

0.
96

0.
44

0.
00

0.
90

0.
30

2
0.

43

0.
00

0.
81

0.
87

0.
40

0.
00

0.
81

0.
27

2
0.

40

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

● 3 1 5

0.
43

4
0.

52
6

0.
51

7
0.

53
0

0.
44

3
0.

52
9

0.
50

3
0.

52
8

0.
39

4
0.

47
8

0.
45

4
0.

47
2

0.
89

6
0.

90
3

0.
88

6
0.

88
7

0.
83

1.
01

0.
97

1.
00

0.
04

0.
05

0.
05

0.
06

0.
88

1.
05

1.
02

1.
06

0.
05

0.
05

0.
06

0.
06

45
.5

45
.1

44
.6

44
.9

2
0.

02
0.

72
1.

06
0.

78

2
0.

03
0.

73
2

0.
10

2
0.

82

0.
00

0.
76

1.
10

0.
80

0.
00

0.
76

2
0.

11
2

0.
86

0.
00

0.
69

0.
98

0.
73

0.
00

0.
68

2
0.

09
2

0.
76

1
W

e
de

fi
ne

th
e

si
ze

,
S

,
of

th
e

G
-m

at
ri

x
as

th
e

su
m

of
th

e
ei

ge
nv

al
ue

s.
2

T
he

ec
ce

nt
ri

ci
ty

of
th

e
G

-m
at

ri
x,

e,
is

th
e

sm
al

le
r

ei
ge

nv
al

ue
di

vi
de

d
by

th
e

la
rg

er
,

so
sm

al
le

r
va

lu
es

of
e

re
fl

ec
t

gr
ea

te
r

ec
ce

nt
ri

ci
ty

.
3

T
he

an
gl

e
of

th
e

G
-m

at
ri

x,
w

,
is

si
m

pl
y

th
e

an
gl

e
of

th
e

le
ad

in
g

ei
ge

nv
ec

to
r,

ex
pr

es
se

d
as

de
gr

ee
s

w
it

h
ze

ro
co

rr
es

po
nd

in
g

to
th

e
ax

is
of

th
e

fi
rs

t
tr

ai
t.



1648 ADAM G. JONES ET AL.

FIG. 3. Snapshots of the G-matrix and the position of the optimum for sample runs of the simulation. The bivariate optimum is represented
by the small shaded circles. The G-matrix is represented as an ellipse, and the lines within the ellipse cross at the bivariate population
mean. Each line has a length in each direction from the mean equal to 1.96 times the square root of the corresponding eigenvalue. Thus,
these ellipses are expected to surround 95% of the breeding values in the population in any given generation. Note that these ellipses
are drawn differently than those in Jones et al. (2003), in which the length along each axis was proportional to the corresponding
eigenvalue rather than the square root of the eigenvalue. In this figure, the optimum of trait 1 is moving to the right and the optimum
of trait 2 is not changing. The optimum and G-matrix are shown every 300 generations during simulation runs of 2100 generations.
Parameter values are identical to those shown in Table 1, except that we also show an additional example with a very strong flying kite
effect (rv 5 0, rm 5 0.9). Note that in this example (next to last panel), the population mean is lagging far to the left and above the
position of the optimum.

correlation increases, in the absence of selectional correla-
tion, the lag of the first trait increases, whereas the lag of the
second trait decreases, thus demonstrating the flying kite ef-
fect. Figure 4 also shows the effects of effective population
size (Ne) on the lag. The amount of lag, that is, the average
length of the vector L, is a decreasing function of Ne (because
the size of G increases with increasing Ne). Without pre-
senting numerical results, our analyses also demonstrated that
an increasing strength of stabilizing selection on the two traits
decreases the lag, whereas a more rapidly moving optimum
increases the lag.

Table 2 demonstrates further that the lag calculated from
equation (5) by averaging over all generations provides a
very accurate estimate of the real lag. Because equation (5)
is based on the multivariate breeder’s equation (eq. 3), this
implies that, on average, (3) predicts the selection response

of the mean very accurately. Even the estimate (6), which is
based on numerically obtained Ḡ and P̄, is surprisingly ac-
curate although, in general, it slightly underestimates the ab-
solute value of both components of the lag.

Reconstructing Net-b

Reconstructions of historical selection patterns have relied
on Lande’s (1979) approximate expression (7) for the net
selection gradient bT. This approximation requires constancy
of the G-matrix. Table 3 as well as the upper row of graphs
of Figure 5 show that, in general, the true net-b is very
accurately predicted in our moving-optimum model by using
equation (7), if Ḡ is calculated from the simulations. How-
ever, closer inspection shows that (7) consistently underes-
timates the absolute values of both components of bT, the
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FIG. 4. Average lag of the phenotypic mean relative to the opti-
mum for populations of different sizes and various values of mu-
tational and selectional correlations. The parameters used to gen-
erate these graphs are the same as those used in Table 1, except
that we use v11 5 v22 5 9 and we perform the simulations using
three different values of Ne. Different symbols correspond to ef-
fective population sizes of 342, 683, and 1366. The symbols con-
nected by solid lines show results for trait 1; whereas those con-
nected by broken lines show the results for trait 2. The top panel
shows the effects of increasing correlational selection on the lag,
and the bottom panel shows the effects of increasing mutational
correlation on the lag.

error being on the order of about 10%. Moreover, Figure 5
shows that the R2 from the regression of the estimated net-
b on the true net-b is larger than 0.9. Thus, apart from the
bias, equation (7) provides a very reliable estimate. This sys-
tematic bias can be explained by the Turelli effect. Turelli
(1988) noted that if G is not constant, then (7) has to be
replaced by (8), which is also based on the multivariate breed-
er’s equation. Table 3 shows that this residual term indeed
explains most of the bias. Should Turelli’s (1988) article have
caused despair among experimentalists (against the author’s
outspoken intention), then our investigation provides some
comfort: the Turelli effect exists, but it is only on the order
of about 5–10% of the main effect, at least under the cir-
cumstances we studied.

In practice, estimates of Ḡ usually are not available, rather

G is estimated from the last, or last few, generations. As
shown by Table 3 and the lower row of graphs in Figure 5,
on average estimates of net-b based on GT instead of Ḡ are
very similar. However, as the regression analyses show (Fig-
ure 4), the R2 value is much lower, implying that any single
estimate based on GT may be very inaccurate. Unfortunately,
but, given the high serial autocorrelation in Gt, not unex-
pectedly, estimation of net-b using the average over the last
five generation of Gt does not increase R2 (Fig. 6).

DISCUSSION

This study illustrates the effects of a moving optimum on
the dynamics of the G-matrix in a finite population. Most of
the important effects on G-matrix stability were captured by
our previous study of G-matrix evolution under a static op-
timum (Jones et al. 2003), so nearly all of the conclusions
of that study remain valid under a moving optimum as well.
However, the addition of a moving optimum revealed ad-
ditional complexities with respect to evolution of the G-ma-
trix and the mean phenotype. This study is particularly im-
portant with respect to the dynamics of the mean phenotype
and its lag relative to the optimum, the retrospective analyses
of selection and the Turelli effect, and evolution along or
across genetic lines of least resistance.

The Lag of the Phenotype and the Flying Kite Effect

Features of inheritance and selection that cause temporary
maladaptation when the adaptive landscape is stationary can
cause permanent departures from the peak when the peak is
steadily moving. In the case of a stationary landscape, genetic
correlation can deflect and substantially delay the approach
of the phenotypic mean to the peak (Lande 1980b). The de-
partures that we observed in our simulations were consistent
with theoretical expectations. A dramatic example of depar-
ture is illustrated by the flying kite effect in which the phe-
notypic mean trails behind and above a moving optimum
(Fig. 3). The largest departures are expected when the adap-
tive landscape and the G-matrix have opposing eigenvectors
(i.e., anti-alignment in which the largest eigenvalue of one
matrix corresponds to the smallest eigenvalue of the other
matrix). In contrast, the flying kite effect is smallest when
the eigenvectors of the two matrices are approximately
aligned (e.g., rv 5 rm). In the alignment case, the contributions
to lag by the G-matrix and the landscape cancel, see equation
(5), so that the mean lags slightly behind the peak but not
above or below it, except for fluctuations caused by drift or
mutation (e.g., bottom panel in Fig. 3). The degree of lag
(i.e., the length of vector L 5 u 2 z̄) is a decreasing function
of S, the size of the G-matrix (Fig. 4).

Clearly, the lag of the mean has important implications for
population persistence in changing environments (Lynch and
Lande 1993; Bürger and Lynch 1995). As the population
increasingly lags behind a moving peak, mean fitness de-
creases. If the decrease is large enough, the population can
go extinct (Lynch and Lande 1993; Bürger and Lynch 1995).
The decrease in mean fitness is expected to be a quadratic
function of the lag of the population mean from its optimum
(Lande 1980b). Because the lag itself is a function of the G-
matrix, fluctuations in G will be amplified and may have
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TABLE 3. Expected results of retrospective analysis of selection under different parameter combinations. See Table 1 for parameter
values for these runs. The net Du values show the total distance the optimum moved (in units of environmental standard deviations)
over 2000 generations of evolution. The actual values of net-b were calculated by estimating b each generation according to equation
(4) and summing across generations. Other columns show net-b calculated from retrospective selection analysis, using either the mean
G-matrix (Ḡ) or the contemporary G-matrix (GT) for G in equation (3). The final two columns show the Turelli effect, t, calculated
from equation (10). All of the values in this table are means across 20 independent simulation runs.

rv rm

net
Du1

net
Du2

Actual
values

net-b1 net-b2

Estimation
from Ḡ

net-b1 net-b2

Estimation
from GT

net-b1 net-b2

Turelli
effect

t1 t2

0
0
0
0

0
0
0
0

0.0
14.1
20.0
14.1

0.0
14.1

0.0
214.1

20.2
30.7
42.2
28.5

20.8
30.3

21.2
230.3

0.0
29.0
39.5
26.5

0.2
28.5

20.5
227.0

20.1
30.8
43.2
27.8

0.2
29.3

21.3
230.3

0.1
22.1
23.1
21.4

0.2
22.0

0.3
1.9

0.75
0.75
0.75
0.75

0
0
0
0

0.0
14.1
20.0
14.1

0.0
14.1

0.0
214.1

0.3
31.4
50.1
39.8

0.1
29.0

29.3
237.6

20.1
28.4
44.9
35.4

0.4
27.1

27.0
234.7

20.1
30.5
51.7
41.7

0.5
27.4

24.3
236.5

20.2
21.8
23.0
22.4

0.1
21.5

0.8
2.1

0
0
0
0

0.5
0.5
0.5
0.5

0.0
14.1
20.0
14.1

0.0
14.1

0.0
214.1

20.5
20.5
53.3
56.3

0.0
21.6

224.4
253.9

20.4
18.8
49.4
51.7

0.5
20.4

223.2
251.7

20.2
18.9
60.5
58.2

0.5
23.5

230.8
256.9

0.5
21.4
23.0
23.1

20.2
21.5

1.6
2.2

0.75
0.75
0.75
0.75

0.5
0.5
0.5
0.5

0.0
14.1
20.0
14.1

0.0
14.1

0.0
214.1

0.7
19.7
61.6
62.2

20.8
21.3

232.5
261.8

0.4
18.4
57.2
58.5

20.4
18.8

231.1
258.7

0.4
21.6
70.5
72.4

20.6
20.9

237.7
272.7

20.1
21.1
23.7
24.0

0.1
21.2

1.5
3.2

0.9
0.9
0.9
0.9

0.9
0.9
0.9
0.9

0.0
14.1
20.0
14.1

0.0
14.1

0.0
214.1

1.5
14.3

205.6
267.4

22.4
16.3

2185.5
2268.1

20.3
14.7

188.2
250.3

0.3
13.8

2169.8
2251.2

20.7
19.5

191.1
254.1

0.7
13.6

2167.3
2252.5

0.5
21.0

212.0
210.7

20.6
20.8
10.9
10.7

large negative effects on mean fitness. Thus, even when the
population is potentially able to keep up with a moving peak
(i.e., maintain a constant lag), stochastic fluctuation in G and
hence in mean fitness may drive it extinct. Conditions that
stabilize the G-matrix under a selection regime with a moving
optimum are also conditions that favor population persis-
tence.

The Maintenance of Genetic Variance under a
Moving Optimum

Peak movement can increase genetic variation and co-
variation relative to a static peak. In other words, the addition
of directional selection increases the genetic variance relative
to stabilizing selection alone. This effect on genetic variance
has been found in past simulations of directional selection
(Bürger and Lynch 1995; Bürger 1999). The increase in ge-
netic variances apparently arises because the directional se-
lection induced by peak movement causes a recurrent pattern
of favorable alleles sweeping toward fixation (Barton and
Turelli 1987). Each selective sweep boosts genetic variance.
Even when peak movement changes the optimum of only one
trait, pleiotropy of alleles sweeping toward fixation increases
the genetic variance of the other trait as well as the genetic
covariance between the two traits. In large populations the
increase in genetic variance due to peak movement can be
considerable (Bürger and Lynch 1995; Bürger 2000). For
example, in our simulations involving effective population
sizes of 2731 individuals, the largest increase in the genetic
variance for trait one occurred when the optimum moved to
the right. Regardless of the values of the mutational and

selectional correlations, a population evolving in response to
an optimum moving to the right maintained approximately
150–200% of the genetic variance present in a population
experiencing stabilizing selection alone.

The Stability of G under a Moving Optimum

Promotion of G-matrix stability by peak movement was
an unanticipated result. Although peak movement has vir-
tually no effect on the stability of eigenvalues (as registered
in G-matrix size and eccentricity), it can have a small sta-
bilizing effect on the angle of the G-matrix. In particular,
the stabilizing effect arises when peak movement reinforces
the evolution of a cigar-shaped G-matrix. Thus, alignment
of the mutation matrix and the adaptive landscape (e.g., rm

5 rv 5 0.9) produces a cigar-shaped G-matrix (Fig. 3, bottom
panel). When the peak moves along the long axis of the cigar
(the genetic line of least resistance; Schluter 1996), the angle
of the G-matrix becomes especially stable (Table 1; Figs. 1,
2).

In contrast, the G-matrix tends to be less stable when the
optimum moves across genetic lines of least resistance. A
stationary optimum (i.e., stabilizing selection only) generally
produces a G-matrix that is intermediate in stability relative
to either a peak moving along or across genetic lines of least
resistance. Thus, in addition to alignment of the mutational
and selectional correlations, alignment of the direction of
peak movement with these correlations also enhances G-ma-
trix stability, at least with respect to orientation. In some
cases this effect is very pronounced. For example, when the
mutational correlation is very weak, but the selectional cor-
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FIG. 5. Estimation of net-b from retrospective selection analyses. For these graphs, we allow the optimum for trait 1 to increase, while
the optimum of trait 2 is held constant. The x-axis shows the actual net-b calculated directly each generation and summed across the
2000 generations. The y-axis shows the results of retrospective selection analysis, using either the mean G-matrix (averaged across all
2000 generations) or the contemporary G-matrix (from the last generation) in equation (3). Each point in the graph represents the results
from a single run of the simulation (i.e., analogous to what one would have in a real empirical assessment of selection). We introduce
variation in b by allowing the first trait’s optimum to move at different rates during the different runs. In the four leftmost panels, Du1
ranged from 0.00 to 0.05 in intervals of 0.001. In the two rightmost panels, Du1 ranged from 0.00 to 0.02 in intervals of 0.0004. Note
that within a run Du1 is constant (and this is true for the entire study), but each of the points on a given graph was generated using runs
with different values of Du1. This approach was necessary to generate variance in the actual value of b.

relation is strongly positive, movement of the optimum across
genetic lines of least resistance essential cancels out any ben-
efit in stability gained by the high correlational selection (Fig.
1, rightmost filled circle, compared among the three panels).

Our simulations neglect some potentially important influ-
ences on G-matrix stability. First, although peak movement
with constant direction and speed may characterize some se-
lection regimes in nature (e.g., global warming), peak move-
ment may be variable in speed and direction under many
other circumstances (Arnold et al. 2001). In such cases of
temporal variation in the rate and direction of peak move-
ment, the angle of the G-matrix is probably less stable than
in the cases examined in the present report, although size
and eccentricity stability are not likely to be affected. Second,
change in the shape (curvature) of the adaptive landscape is
conceivable in some circumstances. Relaxation of selection
pressures (e.g., due to decreased competition) could corre-
spond to increased width of the adaptive landscape. If relax-
ation did not change the orientation of the landscape, so that
the eigenvectors of v 1 P remained unchanged, then the
average orientation of the G-matrix would not be affected,
although its angle would be less stable. Third, change in the
orientation of the landscape could affect both the average
angle of the G-matrix and its stability. Trait evolution that
alters functional connections among characters (i.e., changes
correlational selection) could have this kind of effect. Fourth,
the pattern of pleiotropic mutation remains constant in our
simulations. It seems likely that the mutation matrix itself

evolves in response to directional and stabilizing selection.
Thus, features of the environment and trait interaction that
impart instability to the mutation matrix will also promote
instability of the G-matrix. We hope to address some of these
influences on G-matrix stability in future reports.

Retrospective Analysis of Selection

Our results are encouraging for empiricists in that they
indicate that the true net-b can be accurately reconstructed
under some circumstances. In particular, using Lande’s
(1979) expression, we were able to accurately estimate the
magnitude of net-b when we used a value of Ḡ based on the
entire sequence of 2000 generations. Although the estimation
was relatively accurate in this case, there was a small sys-
tematic bias such that net-b was consistently underestimated.
This bias increased linearly with true net-b (Figure 5), and
was almost certainly a consequence of the Turelli effect (Tur-
elli 1988; Shaw et al. 1995).

Even though the Turelli effect introduced a systematic bias
in the estimation of net-b, the magnitude of this bias was
generally small in our simulations. This effect, which arises
due to within-generation covariance between G and b, was
typically about 5–7% of net-b when the effective population
size was 342. Interestingly, as the population size increases,
the relative magnitude of the Turelli effect decreases, such
that in our largest populations, with Ne 5 2731, the Turelli
effect was only about 1–2% the magnitude of net-b. Although
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FIG. 6. Reconstruction of net-b from the last two or five G-matrices from the population. These graphs are the same as those shown
in Figure 5, except that the retrospective selection analysis uses either the mean of G-matrices from the last two (top) or five (bottom)
generations of evolution. This situation is analogous to an empirical attempt to obtain a better estimate of the G-matrix by calculating
genetic parameters from several recent generations of the population under study.

a Turelli effect of this magnitude might be considered a tol-
erable source of error in a calculation using real data, under
some circumstances the effect could be considerably larger.
The consistently negative sign of the summation term indi-
cates that the covariance between G and b was negative in
our simulations. The effect of this negative sign would be a
consistent tendency to underestimate net-b using Lande’s
(1979) expression. In particular, this underestimation could
occur if large deviations in b happen in episodes consisting
of at least a few generations in a row, so that deviations in
b are positively autocorrelated. Such a temporal pattern could
lead to the accumulation of within-generation covariance be-
tween G and b. Thus, it clearly is possible to concoct sce-
narios under which the Turelli effect is a serious problem for
retrospective selection analyses. However, the general mes-
sage of our results is that under many circumstances it may
not seriously complicate estimation of net-b, particularly in
analyses involving large populations.

One important caveat regarding our interpretation of the
importance of the Turelli effect is that we did not investigate
selection of the type that Turelli (1988) believed would be
most likely to produce covariance between G and b. Turelli
believed that large fluctuations in the intensity and direction
of selection would be most likely to produce a correlation
between G and b. In our study, we used a constant rate of
peak movement, resulting in fairly small fluctuations in the
intensity of selection. Fluctuating selection is beyond the
scope of the current study, so it remains to be seen whether
the Turelli effect is more important under such circumstances.

Accuracy in estimation of net-b from real data will depend
on how well Ḡ is estimated. Our simulations indicate that
the use of a single G-matrix to estimate Ḡ could lead to a

highly erroneous estimate for the magnitude of net-b. Some
of the outliers in Figure 5 represent large overestimates of
net-b. Unfortunately, the prospects for reconstructing net-b
do not improve considerably when multiple recent genera-
tions are used to estimate Ḡ (Fig. 6). With up to the five
most recent generations used to estimate Ḡ, the reconstruc-
tion of net-b still does not improve appreciably. Thus, our
results strongly suggest that it is not a useful exercise to
estimate the G-matrix from multiple generations within a
population in hopes of improving the accuracy of retrospec-
tive selection analyses. This phenomenon is a consequence
of the high autocorrelation of G (Jones et al. 2003). In reality,
the prospects for estimating Ḡ from contemporary popula-
tions may be even worse than the impression given by our
analysis, because in the simulations we know the exact G-
matrix each generation. In empirical studies of real organ-
isms, error in the estimation of G will further hinder the
pursuit of an accurate estimate of Ḡ. The only hope for good
estimates of Ḡ probably will come from comparative studies
of G in a phylogenetic context.

One other interesting result regarding the reconstruction
of patterns of selection is that a more stable G-matrix has
only a modest effect on the accuracy of estimation of net-b.
For example, a mutational correlation of 0.90 produces a G-
matrix with extremely stable orientation (Fig. 3), and yet
almost as much error surrounds the estimation of net-b in a
population with this high mutational correlation as in a pop-
ulation with no mutational or selectional correlations (Fig.
5). This phenomenon is partially due to the fact that correct
estimation of net-b depends not only on the orientation of
the G-matrix, but also on the size of G. It may also be caused
partially by the fact that unstable G-matrices tend to be round
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and do not seriously constrain the path of evolution, whereas
stable G-matrices do constrain the path but the constraints
are better estimated due to their high stability.

Our results help clarify the different inferences that can be
made from net-b and from a net change in the phenotypic
mean. Net-b describes the minimum force of directional se-
lection required to account for an observed change in the
mean, assuming that selection acts through a particular or
average G-matrix (Lande 1979). Although a moving adaptive
peak will induce directional selection, net-b does not provide
a reconstruction of peak movement. Once a population has
reached quasi-equilibrium between directional selection,
drift, and mutation, however, the lag of the multivariate phe-
notype will remain relatively constant and the net change in
the phenotypic mean will approximately equal net peak
movement. In contrast, net-b will often give an inaccurate
picture of peak movement, especially when genetic corre-
lation is high and the optimum phenotype of only one char-
acter changes (Table 3). For example in the penultimate panel
of Figure 3, there is persistent directional selection on trait
two, even though its optimum never deviates from zero.

Empirical Observations of G-Matrix Stability

One of the most interesting results from comparative stud-
ies of G-matrices is the observation that eigenvectors can be
conserved even when eigenvalues vary (Arnold 1981; Arnold
and Phillips 1999; Roff and Mousseau 1999). The observa-
tion of conserved eigenvectors is especially notable because
it is seen between sister populations with divergence times
ranging from tens of generations to hundreds of thousands
of generations. What do our simulation results tell us about
this kind of stability? In our simulations, conservation of
eigenvectors is revealed as small per generation change in
the angle of the leading eigenvector of the G-matrix (i.e., by
small average Dw). In our simulations we held the multivar-
iate patterns of mutation and selection constant. We found
that conservation of eigenvectors (orientation stability) was
promoted by large population size, pleiotropic mutation (mu-
tational covariance), correlational selection, alignment of mu-
tation and selection, steady movement of the selective op-
timum, and alignment of that movement with mutation and
selection. Leaving aside population size and mutation for the
moment, all of these orientation-stabilizing factors can be
visualized in terms of a particular kind of adaptive landscape.
That landscape has an evolutionarily persistent shape that
consists of a cigar-shaped hilltop oriented at some angle to
the trait axes, so that it produces strong correlational selec-
tion. The main axis of the hill is aligned with the evolution-
arily persistent axis of the matrix that describes mutational
variation. These circumstances are sufficient to produce a G-
matrix that is in alignment with both mutation and selection.
Finally, the hilltop moves in a direction that is in alignment
with mutation, selection, and the G-matrix. The direction of
movement corresponds to the genetic line of least resistance
(Schluter 1996), but it also corresponds to the leading ei-
genvalue of the adaptive landscape, which Arnold et al.
(2001) called the ‘‘selective line of least resistance.’’ Al-
though this particular vision of an adaptive landscape with
a moving optimum is the one most conducive to orientation

stability of the G-matrix, all of these factors and their several
alignments may not have played a role in the observed in-
stances of G-matrices with conserved eigenvectors. Never-
theless, it seems inevitable that some subset of these factors
is responsible for the observed conservation of orientation.
The tasks before us are to determine whether conservation
of G orientation is sufficiently common to warrant our con-
tinued attention and, if so, to devise tests that identify which
candidate factors are responsible for that conservation.

Conclusions

Our simulation-based model of the dynamics of the G-
matrix under persistent directional selection advances our
understanding of several important issues in quantitative ge-
netics. First, most major influences on G-matrix stability can
be illustrated in the stabilizing selection case explored by
Jones et al. (2003). The only major surprise with respect to
G-matrix stability under a moving optimum is that movement
along genetic lines of least resistance enhances stability of
the orientation of the G-matrix, whereas movement across
these lines decreases stability. Our second major result is that
a persistently moving adaptive landscape can produce chronic
maladaptation through the flying kite effect, even at traits
whose optima are not changing. This effect is most pro-
nounced when the G-matrix is stable, providing another phe-
nomenon for which G-matrix stability is important. Another
important point, which is not new to our study but also is
not widely appreciated, is that a trait experiencing directional
selection due to a moving optimum will exhibit greater ge-
netic variance than the same trait experiencing only stabiliz-
ing selection. Finally, we gained several new insights into
the reconstruction of the history of selection through the es-
timation of net-b. The Turelli effect is certainly real, caused
by negative covariance between b and G, but its magnitude
relative to net-b is small, suggesting that it may not seriously
complicate retrospective selection analysis, at least for a pop-
ulation experiencing a persistently moving optimum. We also
found that the average G-matrix, Ḡ, produced a very good
estimate of net-b, whereas estimates based on only the con-
temporary G-matrix were prone to error. Averaging over a
few recent generations did not help appreciably, so the best
approach to the estimation Ḡ is probably to infer it from
comparative analysis involving closely related species or
populations.
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