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Abstract

Theoretical and empirical results demonstrate that the G-matrix, which

summarizes additive genetic variances and covariances of quantitative traits,

changes over time. Such evolution and fluctuation of the G-matrix could

potentially have wide-ranging effects on phenotypic evolution. Nevertheless,

no studies have yet addressed G-matrix stability and evolution when move-

ment of an intermediate optimum includes large, episodic jumps or stochas-

ticity. Here, we investigate such scenarios by using simulation-based models

of G-matrix evolution. These analyses yield four important insights regard-

ing the evolution and stability of the G-matrix. (i) Regardless of the model

of peak movement, a moving optimum causes the G-matrix to orient

towards the direction of net peak movement, so that genetic variance is

enhanced in that direction (the variance enhancement effect). (ii) Peak

movement skews the distribution of breeding values in the direction of

movement, which impedes the response to selection. (iii) The stability of

the G-matrix is affected by the overall magnitude and direction of peak

movement, but modes and rates of peak movement have surprisingly small

effects (the invariance principle). (iv) Both episodic and stochastic peak

movement increase the probability that a population will fall below its car-

rying capacity and go extinct. We also present novel equations for the

response of the trait mean to multivariate selection, which take into account

the higher moments of the distribution of breeding values.

Introduction

The G-matrix of quantitative genetics plays a central

role in theory for the evolution of phenotypic traits,

especially those affected by many genes and environ-

mental factors (Lande, 1979). The G-matrix provides a

summary of additive genetic variances and covariances

for a suite of phenotypic traits, so its importance stems

from the central role of genetic variation in evolution-

ary processes. For example, the additive genetic vari-

ances recorded in the G-matrix provide an indication of

the potential for trait means to be altered by evolution-

ary mechanisms such as natural selection or genetic

drift (Arnold et al., 2001; Steppan et al., 2002). In addi-

tion, the genetic covariances summarized by the

G-matrix provide a window into the extent to which

evolutionary change in one trait is expected to affect

the evolution of other measured traits, whose values

may in part be determined by pleiotropic or linked loci

(Lande, 1979; Arnold et al., 2001). Despite its central

role, the evolution and stability of the G-matrix remain

outstanding, incompletely resolved problems (Jones

et al., 2003; Arnold et al., 2008). The lack of complete

resolution reflects the difficulty of finding analytical

characterizations of G as a function of underlying

processes, as well as the limitations of empirical studies

in which G-matrices are sampled from natural or
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experimental populations and compared (Turelli, 1988;

Steppan et al., 2002; Arnold et al., 2008). Because of

these difficulties and limitations, simulation studies of

the G-matrix have emerged as a powerful and comple-

mentary alternative to analytical theory and compara-

tive studies (Jones et al., 2003, 2004, 2007; Guillaume &

Whitlock, 2007; Revell, 2007; Arnold et al., 2008;

Yeaman & Guillaume, 2009). Although largely restricted

to the case of additive genetic effects (the simplest geno-

type-to-phenotype map), simulation studies yield many

insights into the evolution and stability of the G-matrix.

A significant limitation of the simulation studies con-

ducted so far is that they have not fully explored condi-

tions that may contribute to G-matrix instability. For

example, consider the case of traits evolving on an adap-

tive landscape with a single adaptive peak or optimum.

Turelli (1988) argued that Gwould be especially unstable

if the optimum were prone to episodes of large displace-

ments. Although other cases of moving optima have

been studied – steady movement (Jones et al., 2004) or

erratic movement about a fixed position (Revell, 2007) –
the cases of episodic and stochastic movement have not

been addressed, an unfortunate lapse because both might

yield illuminating instances of instability. The neglect of

the episodic case is particularly unfortunate because this

model of peak movement appears to be more consistent

with known evolutionary trends than any other pro-

posed model (Estes & Arnold, 2007; Uyeda et al., 2011).

The goals of this article are to explore the evolution

and stability of the G-matrix when an intermediate

optimum moves episodically or stochastically, with the

justification that these cases might be both common in

nature and especially conducive to instability of G. We

compare these results with those for an optimum that

moves at the same rate every generation, thereby iden-

tifying the influence of the mode of peak movement on

various descriptors of the size, shape and stability of the

G-matrix. We provide new theory that demonstrates

and quantifies the role of skewness of breeding values

induced by multivariate selection. To achieve greater

power to detect systematic effects, we employ larger

population sizes, stronger stabilizing selection and

longer simulation runs than in our past study of a stea-

dily moving optimum (Jones et al., 2004). Finally, we

evaluate the effect of G-matrix instability on data anal-

yses that assume the G-matrix is constant. In particular,

we determine how estimation of the net selection gra-

dient (net-b; Lande, 1979) is affected by skewness of

the breeding values and by the instability in G induced

by different modes of peak movement.

Methods

The simulation model

Our model uses a Monte Carlo approach to simulate a

diploid, sexually reproducing population with two

phenotypic traits. The model, an extension of univari-

ate models of the evolution of additive genetic variance

(Bürger et al., 1989; Bürger & Lande, 1994; Bürger &

Lynch, 1995), has been described in detail elsewhere

(Jones et al., 2003, 2004). Each simulation run starts

with a population of N diploid adults. The life cycle

consists of (i) random, monogamous mating, (ii) pro-

duction of progeny, including mutation and free recom-

bination, (iii) viability selection and (iv) random culling

of the population to a carrying capacity of N adults. The

two quantitative traits are determined by n additive,

pleiotropic loci. Hence, each allele at each locus poten-

tially affects both traits, and allelic effects are summed

across loci to determine an individual’s breeding (addi-

tive genetic) value for each trait. To simulate environ-

mental variance, we determine an individual’s vector of

phenotypic values by adding to each breeding value a

random number drawn from a normal distribution with

mean zero and variance of unity. The parameters and

variables used in our model are summarized in Table 1.

During the progeny-production phase, we choose

gametes at random to be affected by mutation. We

assume a uniform per-locus mutation rate of l. We

draw a pseudorandom number between 0 and 1 from a

uniform distribution and assume that a gamete carries a

new mutation if the random number is less than nl.
For gametes affected by a mutation, we choose a locus

at random and change the allelic effects at that locus in

the gamete under consideration in accord with the con-

tinuum of allele models (Crow & Kimura, 1964).

Because every locus is pleiotropic, each allele has two

allelic effects, one for each of the two phenotypic traits.

Thus, we simulate mutational effects by drawing two

numbers from a bivariate normal distribution with

means of zero, variances of a21 and a22 and a correlation

of rl. These mutational effects are then added to the

existing allelic effects at the locus. Note that a21, a
2
2 and

rl (i.e. the mutational variances for the two traits and

the mutational correlation) together describe the muta-

tional matrix (M) for a locus. In this model, we make

the simplifying assumption that all loci have identical

mutational matrices and that the mutational matrix

remains constant throughout a particular run (i.e. M is

a parameter of the model).

We impose selection by assuming a single-peaked

individual selection surface with the shape of a Gauss-

ian distribution. Hence, the fitness, W(z), of an indivi-

dual with phenotype z (a column vector of phenotypic

values) depends on its phenotypic distance from the

bivariate optimum, according to the equation:

WðzÞ ¼ exp � 1

2
z� hð ÞTx�1 z� hð Þ

� �
; (1)

where h is a column vector of trait optima, T represents

matrix transposition and the matrix x describes the ori-

entation and curvature of the individual selection sur-

face (Lande, 1979). For the two-trait case, x is a 2 9 2
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matrix, with diagonal elements x11 and x22, which

describe the width (and also curvature) of the individ-

ual selection surface. Smaller values of these diagonal

elements indicate stronger stabilizing selection. Both

off-diagonal elements are given by x12, which deter-

mines the strength of correlational selection. In the

model, W(z) is the probability that an individual sur-

vives from birth to adulthood, with a maximum value

of one for individuals at the optimum. We represent

the strength of correlational selection as a standardized

coefficient, analogous to a correlation coefficient,

rx ¼ x12 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x11x22

p
. In our runs, we set stabilizing

selection at a moderately strong value, x11 = x22 = 9,

and vary rx from �0.9 to 0.9.

From the survivors of selection, we choose N indivi-

duals at random to represent the adults of the current

generation, which then mate at random to produce the

next generation of progeny. To ensure that results are

comparable across simulation runs, we terminate a run

if fewer than N individuals survive selection and calcu-

late summary statistics only for parameter combinations

under which all replicate populations survive for the

entire duration of the simulation. We record the

parameter combinations under which some runs fall

below the carrying capacity, because this drop in popu-

lation size is a necessary precursor to population extinc-

tion. In models with a moving optimum, a drop below

the carrying capacity will almost always result in rapid

population extinction, because the loss of genetic varia-

tion associated with the reduction in effective popula-

tion size exacerbates the problem that the population

cannot evolve quickly enough to keep up with the

moving optimum. We assume an equal sex ratio among

the N adults and impose a monogamous mating system.

Each breeding pair produces exactly 2B offspring (i.e.

B is the number of offspring per reproducing adult),

resulting in effective population sizes larger than the

census population sizes (Bürger & Lande, 1994; Jones

et al., 2003). Because the effects of population size on

G-matrix stability are well understood, we focus on a

population of 1024 adults, which corresponds to an

effective population size of 1366 (Jones et al., 2003,

2004).

Each run of the simulation starts with a genetically

monomorphic population, and we allow genetic

variation to accumulate during an initial 10 000

Table 1 Variables and parameters used in the model

Variable Description

N Number of diploid adults in the sexually reproducing

population (1024 in the present study)

n Number of pleiotropic loci (set to 50 in this analysis)

l Mutation rate per locus per meiosis (held at 0.0002 for this

study)

a21; a
2
2 Mutational variances for trait 1 and trait 2 (the diagonal

elements of the mutational matrix, M)

rl Mutational correlation (the standardized off-diagonal element

of the M-matrix)

z A two-element column vector of trait values (z1 and z2 are

the values for trait 1 and trait 2)

h A two-element column vector of trait optima (h1 and h2 are

the optima for the traits)

W(z) The fitness of an individual with phenotype z

x11,

x22

The width of the selection surface for traits 1 and 2 (the

diagonal elements of x)

rx The selectional correlation (the standardized off-diagonal

element of x)

B The number of offspring per reproducing adult (set to 2 in

the present analysis)

Dh A two-element column vector describing the per-generation

change in the position of the optimum

r2h1;r
2
h2 The amount of stochasticity in the position of the optimum

for traits 1 and 2, respectively

G11,

G22,

G12

The elements of the G-matrix: the additive genetic variances

and the additive genetic covariance

rg The additive genetic correlation (i.e. G12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11G22

p Þ
k1, k2 The eigenvalues of the G-matrix

φ The angle of the leading eigenvector of G on a graph with

trait 1 on the x-axis and trait 2 on the y-axis

Σ The size of the G-matrix, defined as G11 + G22 or

equivalently k1 + k2
e The eccentricity of G, defined as the smaller eigenvalue

divided by the larger eigenvalue

D When preceding the above variables, indicates the

per-generation change in the variable of interest

b A two-element column vector of directional selection

gradients (b1 and b2) on the two traits (eqn 2)

bT Net-b, which is the sum of the per-generation b values over

the time period of interest

x A two-element vector of breeding values (i.e. additive

genetic values) for the two traits of an individual

P The phenotypic covariance matrix, with elements P11, P22

and P12.

E The environmental covariance matrix, so P = G + E, and in

our model E has diagonal values of 1 and zeros elsewhere

L A two-element column vector of the lag, either observed

(h� z) or expected (indicated by subscripts) under a

Gaussian model (eqn 3)

Λ A two-element column vector of the expected lag, taking

the skewness in breeding values into account (eqn 4)

Ω A matrix describing the curvature of the fitness surface for

breeding values (Ω = x + E)

r�xW The first-order selection gradient with respect to breeding

values (i.e. b)

Table 1 (Continued)

Variable Description

rGW The second-order selection gradient with respect to the

genetic covariances (necessary for theory of the lag

including skewness)

τ A two-element vector of the Turelli effect for each trait, which

arises due to covariance between G and b (eqn 9)
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generations of evolution under a stationary optimum.

We follow these generations with 2000 generations of

directional selection under the model of peak move-

ment of interest, allowing the population to equilibrate

with respect to the moving optimum. Finally, the simu-

lations run for an additional 4000 experimental genera-

tions, during which the optimum continues to move

according to the model of interest and we tally genetic

variables every generation. We typically replicate each

combination of parameters in 20 independent simula-

tion runs and calculate averages within and between

these runs (Jones et al., 2003, 2004).

Rates and modes of peak movement

We employ three models of peak movement (Fig. 1)

and perform control simulations under a stationary

optimum. In the first model of peak movement,

steady directional movement, the bivariate optimum

shifts every generation by a small amount, k. In the

second model of peak movement, the optimum moves

at the same overall rate as in the steady directional

movement model, except that the bivariate optimum

moves instantaneously a correspondingly large dis-

tance every 100 or 250 generations and otherwise is

stationary. In this model, the optimum spends long

periods of time in a stationary position, but this stasis

is punctuated by large jumps. For our third type of

peak movement, we use a stochastic model (determin-

istic change with Brownian motion) in which the

position of the optimum for a trait at generation t

(i.e. ht) is a function of the old position (ht-1), a con-

stant amount of change (k) and a component of ran-

dom change (eh), so that the change in optimum at

generation t is

Dht ¼ ht � ht�1 ¼ kþ eh

where eh is normally distributed with mean 0 and

variance r2h .
We choose modes and rates of peak movement that

bracket empirical observations. Stasis is the predomi-

nant pattern of evolution observed in a large sample of

neontological and palaeontological studies, but substan-

tial evolutionary change is also observed in a significant

subset of cases (Gingerich, 2001; Estes & Arnold, 2007;

Uyeda et al., 2011). At the two rates of evolutionary

change we employ (0.006 or 0.008 phenotypic standard

deviations per generation), the optimum moves 23–33
phenotypic standard deviations in 4000 generations. At

this timescale, no observations in Gingerich’s (2001)

extensive data set show as much evolutionary change.

On the other hand, Kinnison & Hendry (2001) find a

median rate of 0.006 in a large sample of studies on

shorter timescales (< 300 generations), a value that clo-

sely matches those used in our simulations. Thus, we

use rates of peak movement that approximate those
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Fig. 1 Schematic portrayals of the three modes of peak movement

used in the simulations. In all of these figures, the peak starts at

(or near) the origin and moves up and to the right. In (a), the

peak moves every generation in a constant direction at a constant

rate. In (b) and (c), the average rate and direction are as in (a). In

(b), the peak remains stationary for many generations and then

jumps to the new position. In the case shown, the jumps occur

every 100 generations. In (c), the peak moves every generation,

but peak movement also includes an element of stochasticity each

generation. In this case, the stochasticity variance parameter (r2hÞ
is 0.01.
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observed over relatively short-term periods of evolution

but that would be unlikely to persist over extremely

long periods of time.

For each model of peak movement (Fig. 1), we

investigate three different directions of movement of

the optimum phenotype. In the first case, the optima of

both traits increase, so the bivariate optimum moves up

and to the right on a plot with trait one values on the

x-axis and trait two values on the y-axis. In this first

case we represent the movement by ↗. In the second

case, the optimum for trait one increases, whereas the

optimum of trait two remains stationary on average

(?). In the final case, the optimum for trait one

increases and the optimum for trait two decreases (↘).
As noted above, we also investigate a stationary opti-

mum (●) for comparison.

Characterization of the G-matrix

We quantify the G-matrix in three different ways,

following the precedent set by Jones et al. (2003,

2004). The simplest characterization is to consider the

individual elements of the two-trait G-matrix: the

trait one additive genetic variance (G11), the trait two

additive genetic variance (G22) and the additive

genetic covariance between the two traits (G12). The

genetic correlation (rg) also provides a useful way

of comparing genetic constraints across G-matrices.

The second approach that we use to quantify the

G-matrix involves examining the eigenvectors and

eigenvalues of the matrix. This approach is useful,

because the leading eigenvector of the G-matrix indi-

cates the direction in phenotypic space with the max-

imum amount of additive genetic variance (i.e. the

genetic line of least resistance; Schluter, 1996). We

quantify the eigenvector as an angle in degrees rela-

tive to the x-axis on a plot with the x-axis represent-

ing trait one and the y-axis representing trait two.

Thus, we can fully describe the G-matrix by using

the angle of the leading eigenvector (φ) and the

eigenvalues (k1 and k2). A third way to characterize

the G-matrix is to use the size Σ, which is equal to

the sum of the eigenvalues (or G11 + G22), as a mea-

sure for the total amount of variation; the inverse

measure e of eccentricity, which we define as the

smaller eigenvalue divided by the larger eigenvalue;

and the angle φ. We use two sets of measures of sta-

bility of the G-matrix. One describes the rate at

which the G-matrix changes per generation, repre-

sented by the mean absolute values of the per-gener-

ation changes in each of these variables and denoted

by a D preceding the symbol for the relevant vari-

able. We also report the standard deviations of

G-matrix descriptors across all generations within a

simulation run as measures of the extent to which

variables experience excursions from their long-term

(i.e. within-run) averages.

Theoretical background

The evolution of the G-matrix on a landscape with a

moving optimum is closely tied to theory for the

response of the multivariate phenotypic mean to selec-

tion and the lag of that mean relative to the optimum,

so we present here some critical equations that will be

necessary to interpret our results. One feature of our

model, or any theoretical or empirical example of evo-

lution in response to a moving optimum, is that the

population mean will lag behind the optimum. In the

present study, we use the difference between the mean

phenotype and the optimum as a measure of the

strength of selection in any given generation (Lande,

1979). Assuming a Gaussian selection surface (eqn 1),

the selection gradient bt at time t, defined by r�zW (see

Appendix I), becomes the following column vector:

bt ¼ xþ Ptð Þ�1 ht � �ztð Þ; (2)

where Pt is the phenotypic variance–covariance matrix

at time t, x + Pt is the curvature of the adaptive land-

scape at time t, ht is a column vector of trait optima at

time t, and �zt is a column vector of trait means at time

t. We apply this equation every generation of a simula-

tion run to calculate the true value of the net direc-

tional selection gradient, net-b, that is, of bT ¼ PT�1

t¼0

bt for

that particular run (of length T).

If the optimum moves every generation at a constant

rate, then, assuming the population does not go extinct,

the phenotypic mean will equilibrate some distance

behind the optimum, depending on the amount of addi-

tive genetic variance in the population, the shape of the

selection surface and the rate at which the optimum

moves. Under the assumption of a Gaussian distribution

of breeding values (Lande, 1979), the expected lag is

(Lynch & Lande, 1993; Jones et al., 2004)

L ¼ ht � �zt ¼ ðxþ PÞG�1Dh; (3)

where Dh is a vector of per-generation changes in the

trait optima, and P is the phenotypic covariance matrix.

Note that P = G + E, where E is the environmental

covariance matrix.

As we will see below, we find that in the case of a

rapidly moving optimum and relatively strong curva-

ture of the individual selection surface, eqn (3) consis-

tently underestimates the amount of lag. Because such

deviations can be caused by selection-induced skew in

the distribution of breeding values, we derive equations

for the response to selection and the multivariate lag,

which take into account the third and higher moments

of the distribution of breeding values. This theory is

derived in Appendix I. In this paper, we focus primarily

on the lag rather than the response of the mean to

selection. However, it is important to keep in mind that

the lag and the response to selection are intimately
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related, because the population mean will equilibrate at

a distance behind the optimum at which selection is

sufficiently strong to produce a response that is equal

to the rate at which the optimum is moving. Account-

ing for the skewness of the breeding distribution, our

equation for the expected lag becomes

K � XG�1 Dh� CrGW
� �

: (4)

Here, Λ is a column vector whose elements represent

the lag for each trait, Ω = x + E, rGW is the 4-dimen-

sional (‘quadratic’) selection gradient with respect to

the genetic covariances (eqn A.9 in Appendix I), and C

is the 2 9 4 matrix defined in Appendix I containing

all third-order cumulants ci,j given by

ci;j ¼
Z

x1 � �x1ð Þi x2 � �x2ð ÞjpðxÞdx;

where p(x) denotes the distribution of breeding values,

x = (x1,x2), and i � 0, j � 0, i + j = 3 (see eqn A.16

in Appendix I).

Equation (4) is straightforwardly derived from the

following equation for the change of the vector �xð¼ �zÞ
of mean additive genetic values,

D�x � Gr�xW þ CrGW ; (5)

where r�xW is the directional selection gradient, because

for our model we find that r�xW ¼ X�1K and

rGW ¼ �ð1=2ÞX�1 (Appendix I). Equation (5) can be

generalized to accommodate arbitrary fitness functions.

Then, however, higher-order cumulants affect the

response of the mean (eqn A.4 in Appendix I). The cor-

responding univariate theory was developed by Turelli &

Barton (1990, 1994) and Bürger (1991); see Bürger

(2000) for a comprehensive, unified treatment.

Equation (4) shows that a positively skewed distribu-

tion will increase the expected lag because with our

fitness function rGW ¼ �ð1=2ÞX�1. This result can be

understood intuitively because with positive skew, the

mode of the distribution will be left of the mean. Thus,

a larger fraction of the population is under strong selec-

tion than with a symmetric distribution, but individuals

near the mode harbour less genetic variance than

would be expected under a Gaussian distribution. Con-

sequently, for a given value of the additive genetic vari-

ance, a skewed distribution produces a smaller response

to selection compared with a Gaussian distribution.

If we denote the entries of the 2 9 2 matrix Ω�1 by

a11, a12, and a22, we obtain from eqn (4) the following

representation for the lag in the two-trait case studied

here:

Finally, our analyses will require some theory

related to the calculation of net-b and the Turelli

effect (Jones et al., 2004). Turelli (1988) pointed out

that covariance between G and b could present prob-

lems for the reconstruction of net-b, and he also

predicted that such covariance would be most

pronounced when selection is especially strong, such

as immediately after a major shift in the optimum.

This seemingly reasonable assertion is the motivation

for our interest in the Turelli effect under an episodic

model of peak movement. If we have knowledge of

the average G-matrix, �G, over some time interval of

interest, and we know how much the multivariate

phenotypic mean has changed over that interval

(D�zT ), then we can calculate the total selection that

has operated on the phenotypic mean over the time

interval as the net directional selection gradient bT
(Lande, 1979). If the G-matrix is constant over evolu-

tionary time, then the contemporary G-matrix is equal

to the average G-matrix over the timescale of interest,

a convenience that greatly facilitates the application of

this theory because then

bT ¼
XT�1

t¼0

bt ¼
XT�1

t¼0

�G
�1D�zt ¼G�1D�zT : (7)

However, Turelli (1988) pointed out that even if the

average G-matrix is known, the reconstruction of net-b
can be derailed if b and G covary. Because

D�zT ¼ PT�1
t¼0 Gtbt ; we find

bT ¼ �G
�1DzT � �G

�1
XT�1

t¼0

Gtbt þ �G
�1 �G

XT�1

t¼0

bt

¼ �G
�1DzT � �G

�1
XT�1

t¼0

ðGt � �GÞbt: (8)

If we define the Turelli effect (Jones et al., 2004) as

s ¼ �G
�1

XT�1

t¼0

Gt � �Gð Þbt ; (9)

then we can rewrite eqn (8) as

bT ¼ �G
�1DzT � s: (10)

Thus, in the two-trait case, the Turelli effect will be

quantified by a column vector with two elements, τ1
and τ2, which indicate the extent to which covariance

between b and G presents a problem for the reconstruc-

tion of net-b.

K1

K2

� 	
¼ 1

2detG

ðx11 þ 1ÞG22 � x12G12 x12G11 � x11 þ 1ð ÞG12

x12G22 � x22 þ 1ð ÞG12 x22 þ 1ð ÞG11 � x12G12

� 	
2Dh1 þ a11c3;0 þ 2a12c2;1 þ a22c1;2
2Dh2 þ a11c2;1 þ 2a12c1;2 þ a22c0;3

� 	
: ð6Þ
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Results

The effects of episodic and stochastic peak
movement on the magnitude and shape of G

The mode of peak movement can affect both the configu-

ration and the stability of the G-matrix. In Table 2, we

compare the results of a stationary optimum, a steadily

moving optimum, episodic peak movement and stochas-

tic peak movement for a subset of parameter combina-

tions. For the sake of clarity, we present representative

results only. In actuality, we investigated selectional cor-

relations of �0.9, �0.85, �0.75, �0.5, �0.25, 0, 0.25,

0.5, 0.75, 0.85 and 0.9 and mutational correlations of 0,

0.25, 0.5, 0.75 and 0.9 in all pairwise combinations of

mutational and selectional correlations. Furthermore, we

studied all of these combinations of mutational and

selectional correlations in combination with each model

of peak movement, with several different values for

the interval between peak shifts and the magnitude

of stochasticity in movement of the optimum. The

results shown in Table 2 represent general patterns,

which occurred across the wide array of parameters we

investigated.

One extremely robust result, shown here and in

other studies, is that, relative to a stationary optimum,

peak movement always increases the size of the

G-matrix (G11, G22, k1, k2 and Σ) on average for popu-

lations that remain above their carrying capacity for the

duration of the 4000 experimental generations. In

almost all cases, this ‘variance enhancement effect’

increases G-matrix size by a substantial amount, rang-

ing from increases of about 50% up to a factor of

almost three. The degree of enhancement of additive

genetic variance due to movement of the optimum

depends upon the model of peak movement. Interest-

ingly, episodic movement provides virtually the same

increase in genetic variance as a steadily moving opti-

mum (Table 2), even when the optimum jumps only

every 250 generations by an amount 250 times greater

than the single-generation peak shifts used in the stea-

dily moving optimum model (resulting in the same

amount of net change in the optimum over the 4000

generations of the simulation). Stochastic movement of

the optimum, however, provides a greater enhance-

ment of the genetic variance compared with determin-

istic movement (Table 2).

Table 2 The effects of different models of peak movement on aspects of the G-matrix and its stability. The first three columns show

parameters describing the model of peak movement, with Dh showing the direction of peak movement (● means stationary; ↗ means

Dh1 = Dh2 = 0.0071 on average per generation, ? means Dh1 = 0.01 and Dh2 = 0; ↘ means Dh1 = 0.0071 and Dh2 = �0.0071). The second

column indicates the interval between shifts of the optimum, and the third column indicates the amount of stochasticity in peak

movement. The aspects of the G-matrix shown here include the additive genetic variances for traits one and two (G11 and G22), the genetic

correlation (rg), the size of the G-matrix (Σ = G11 + G22), the eccentricity (e, which is the smaller eigenvalue of G divided by the larger

eigenvalue) and the angle of the leading eigenvector of G (φ). We also show the average lag for the two traits, which is the optimum

minus the phenotypic mean. Each of these values is a mean, calculated by averaging first across the 4000 generations of each run and

then across 20 independent replicate runs under each combination of parameters. The last six columns show the average absolute change

per generation in each aspect of the G-matrix. The values for DG11, DG22, DΣ and De are standardized by dividing by the mean, while Drg
and Dφ are raw values. The following parameters are fixed: number of loci: n = 50; population size: N = 1024; per-locus mutation rate:

l = 0.0002 per generation; mutational variances: a21 ¼ a22 ¼ 0:05; curvature of the selection surface: x11 = x22 = 9; selectional correlation:

rx = 0; mutational correlation: rl = 0.50. For most variables, the standard errors are much smaller than the means, and the bottom row

shows the mean standard error across the 20 independent simulation runs for each column. Also see Table S4 for average within-run

standard deviations.

Dh Interval r2h1 ¼ r2h2 G11 G22 rg Σ e φ L1 L2 DG11 DG22 Drg DΣ De Dφ

● 0 0 0.22 0.22 0.27 0.44 0.56 45.4 0.00 0.00 0.037 0.037 0.024 0.028 0.051 2.9

↗ 1 0 0.50 0.49 0.44 0.99 0.39 44.7 0.14 0.14 0.036 0.036 0.020 0.028 0.051 1.5

↗ 100 0 0.50 0.50 0.44 1.00 0.39 44.9 0.14 0.14 0.036 0.036 0.020 0.028 0.051 1.5

↗ 250 0 0.50 0.50 0.46 0.99 0.37 45.1 0.14 0.14 0.036 0.036 0.020 0.028 0.051 1.4

↗ 1 0.01 0.55 0.54 0.38 1.08 0.44 44.4 0.14 0.13 0.036 0.036 0.022 0.028 0.051 1.9

↗ 1 0.02 0.58 0.55 0.35 1.13 0.47 41.7 0.13 0.11 0.036 0.036 0.022 0.028 0.051 2.2

? 1 0 0.56 0.37 0.23 0.93 0.52 23.4 0.25 �0.05 0.036 0.036 0.024 0.027 0.051 2.5

? 100 0 0.56 0.36 0.24 0.92 0.52 24.1 0.25 �0.05 0.036 0.036 0.024 0.027 0.051 2.4

? 250 0 0.57 0.37 0.24 0.94 0.51 23.8 0.24 �0.05 0.036 0.036 0.024 0.027 0.051 2.3

? 1 0.01 0.57 0.44 0.27 1.01 0.52 32.0 0.23 �0.05 0.036 0.036 0.023 0.027 0.051 2.6

? 1 0.02 0.58 0.50 0.26 1.08 0.55 35.9 0.22 �0.06 0.036 0.036 0.023 0.027 0.051 3.0

↘ 1 0 0.44 0.44 0.06 0.88 0.75 16.9 0.21 �0.21 0.036 0.036 0.025 0.026 0.050 7.5

↘ 100 0 0.45 0.44 0.07 0.89 0.76 18.5 0.21 �0.21 0.036 0.036 0.025 0.026 0.049 8.2

↘ 250 0 0.43 0.44 0.06 0.87 0.76 19.4 0.21 �0.21 0.036 0.036 0.025 0.026 0.049 7.8

↘ 1 0.01 0.48 0.48 0.15 0.95 0.67 36.5 0.20 �0.19 0.036 0.036 0.024 0.026 0.050 5.2

↘ 1 0.02 0.53 0.53 0.19 1.06 0.63 40.7 0.18 �0.19 0.036 0.036 0.024 0.027 0.050 4.3

Mean SE of estimates 0.007 0.007 0.009 0.010 0.009 1.5 0.005 0.006 0.0005 0.0006 0.0001 0.0003 0.001 0.2
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A few other differences between our models of peak

movement are apparent from Table 2. The results in

Table 2 assume a mutational correlation (rl) of 0.5, so

that even when the optimum is stationary the popula-

tion evolves a positive genetic correlation (rg) between

the two traits. When the optimum moves in a positive

direction for both traits (↗), this movement along the

genetic line of least resistance increases the value of rg.

However, the increase in genetic correlation is less pro-

nounced when we introduce stochasticity into the

movement of the optimum. This result occurs because,

even though the net direction of movement of the opti-

mum is along the genetic line of least resistance, the

optimum sometimes moves in a direction that cuts

across this line, creating a situation less favourable for

the evolution of a strong genetic correlation. A similar

effect is seen for the eccentricity (recall that smaller val-

ues indicate a more eccentric G-matrix; Table 2).

A complementary effect occurs when the optimum moves

in a positive direction for trait one but in a negative

direction for trait two (↘). In this case, the optimum

moves in a direction that is misaligned with the muta-

tional matrix, a situation that disfavours the evolution

of a strong genetic correlation relative to the case of a

stationary optimum. However, the effect is less pro-

nounced when the movement of the optimum includes

stochasticity, because in these cases the optimum some-

times moves in a direction favourable for the evolution

of a strong genetic correlation. Thus, stochasticity tends

to temper the effects attributable to the direction of

peak movement. Tables S1–S3 provide a more exten-

sive comparison of the G-matrices and their per-gener-

ation changes under a wider variety of parameter

combinations and lend additional support to the above

summary of findings.

The conclusion that stochastic movement of the opti-

mum dampens the effects of peak movement on

G-matrix stability is especially obvious if we consider

the stability of the angle, φ. The stability of the angle is

a meaningful measure for the stability of G-matrix ori-

entation only if there is sufficient eccentricity, for

instance, if e is less than about 0.8. Figure 2 shows the

average per-generation changes in the angle of the

G-matrix under a wide variety of values for the selec-

tional and mutational correlations. One obvious feature

of this figure is that the average dynamics of the

change in the angle of G are nearly the same for steady

movement as for episodic movement, provided the net

change in the optimum is the same in both cases. In

particular, cases of three-way alignment, for example,

when both the mutational correlation and the selec-

tional correlation are positive and the optimum moves

up and to the right, are most favourable for stability of

the angle. The least stable cases occur when the muta-

tional correlation, selectional correlation and direction

of optimum movement are not aligned (i.e. top row of

graphs with negative selectional correlations or bottom

row of graphs with positive selectional correlations).

Figure 2 also shows an important difference between

runs that include an element of stochasticity in the

position of the optimum and those that do not in that

stochasticity lessens the impact of the stabilizing and

destabilizing effects of the direction of peak movement.

Assessing the effects of the model of peak
movement on the stability of the G-matrix using
variation in G-matrix characteristics

The average values of the variables describing the

G-matrix are nearly identical between runs with steady

movement and those with episodic movement (Table 2,

Tables S1 and S2). In addition, the average values of

these variables differ in some ways under a stochasti-

cally moving optimum, but are more similar than we

might have expected a priori (Tables 2 and S3). How-

ever, even though the average values of these variables

are similar, the dynamics of G-matrix evolution could

be quite different under different models of peak move-

ment if the genetic variances or covariances are more

variable over time under certain models of movement

of the optimum. Table S4 presents the within-run stan-

dard deviations of the G-matrix variables and shows

that episodic peak movement has subtle effects on the

extent to which aspects of the G-matrix and its

between-generation change deviate from the mean over

time. Given the conspicuous differences in the genera-

tion-to-generation dynamics of G under steady versus

episodic peak movement (compare Figs 3 and 4), these

tiny effects are unexpected. The lag, of course, is much

more variable with episodic movement of the optimum,

because the phenotypic mean is quite far from the opti-

mum immediately after an episode of peak movement.

A second observation from Table S4 is that, relative to

steady movement, stochastic movement of the optimum

has much larger effects on the stability of the G-matrix

than episodic movement; in general, stochastic move-

ment leads to increased standard deviations.

For example, the variability in the lag is much higher

in the stochastic model relative to the episodic and

steady models, even though the mean lag is actually

smaller in the stochastic model of peak movement. This

higher variability in the lag is due to the optimum

moving unpredictably, such that the population mean

can be displaced in any direction relative to the opti-

mum in any given generation.

Patterns of G-matrix evolution under episodic and
stochastic peak movement

Some of the differences between the various models of

peak movement are apparent from inspection of the

values of variables during sample simulation runs.

Figure 3 shows a time series of the size of the

G-matrix, the eccentricity, the angle of G and the

ª 2 01 2 THE AUTHORS . J . E VOL . B I OL . 2 5 ( 2 0 1 2 ) 2 2 10 – 2 2 31

JOURNAL OF EVOLUT IONARY B IO LOGY ª 20 1 2 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

Evolution of the G-matrix 2217



selection gradient on trait one for a representative run

with steady movement of the optimum. The selection

gradient is proportional to the distance of the mean

from the optimum (eqn 2), so graphs of b and the lag

are virtually identical. Figure 3 provides a baseline

against which we can compare the representative runs

under the episodic and stochastic models of peak move-

ment, which are shown in Figs 4 and 5, respectively.

The most striking result from the episodic case

(Fig. 4) is that the total additive genetic variance expe-

riences cyclical fluctuations in magnitude. These fluctu-

ations are caused by the periodic spikes in the

magnitudes of lag and the selection gradient, which

occur whenever the peak shifts. Thus, immediately

after a peak shift, selection becomes very strong, the

population mean responds rapidly and the genetic

variance increases. Figure 6 examines these alternating

periods of differing selection in more detail. This figure

shows the dynamics of the genetic variances and selec-

tion gradients, averaged across 20 independent simula-

tion runs, for episodically (with shifts every 100 or 250

generations) and steadily moving optima. In this exam-

ple, only the optimum for trait one is moving, so trait

two experiences mostly stabilizing selection. We can

see from Fig. 6 that episodic movement of the optimum

results in predictable changes in the genetic variances

of both traits. In particular, immediately after a shift in

the optimum, the total additive genetic variance in the

population increases rapidly. Once the trait mean

catches up with the new optimum, however, genetic

variation slowly declines. Such surges and declines in

genetic variance are more pronounced when the shifts
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Fig. 2 The average per-generation change in the angle, Dφ, of G as a function of the strengths of correlational selection and mutational

correlation. The left column shows results under steady movement, in which the optimum moves every generation by a small amount.

The middle column shows results for an episodically moving optimum that jumps every 100 generations, but moves at the same long-term

average rate as in the steady movement case. The right column shows the case in which the optimum moves every generation, but with

stochasticity (r2h1 ¼ r2h2 ¼ 0:01Þ. Mutational correlations ranged from 0 to 0.9, and selectional correlations ranged from �0.9 to 0.9, as

indicated in the graphs. A missing symbol indicates that the population dropped below its carrying capacity and thus was not analysed.

Other parameter values are the same as those indicated in the legend for Table 2. The large arrows indicate the direction of movement of

the optimum, and the average rates of optimum movement are the same as those used in Table 2.
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are larger and less frequent (compare Fig. 6a–b). Even
though directional selection is only acting on trait one

in this example, and mutational and selectional correla-

tions are absent, the additive genetic variance for trait

two also varies cyclically due to the pleiotropic effects

of the loci (Fig. 6a). This episodic movement of the

optimum induces not only distinct cyclical changes in

the genetic variances, but also cycles of eccentricity and

stability of the angle of the G-matrix (Fig. S1).

For a stochastically moving optimum, the situation is

quite different (Fig. 5). Stochasticity of the optimum

results in larger fluctuations in additive genetic vari-

ances (Table S4) that are difficult to discern by inspect-

ing individual simulation runs (Fig. 5). The larger

standard deviations in eccentricity and the angle are a

bit more obvious (Table S4, Fig. 5), and these differ-

ences are attributable to the much larger fluctuations in

the selection gradient that occur with a stochastically

moving optimum compared with a steadily moving one

(compare the bottom panels of Figs 3 and 5).

Effects of episodic and stochastic peak movement
on population persistence

Trends in population persistence in changing environ-

ments are also apparent in our runs. Because we are

interested in comparing genetic variables across simula-

tion runs under different parameter combinations, we

stop collecting data when populations drop below their

carrying capacities. A drop below the carrying capacity is

a step towards population extinction, because popula-

tions unable to maintain a stable population size are at a

much greater extinction risk than those that invariably

remain above their carrying capacities. This assertion is

supported by related studies addressing population

extinction in response to environmental change (Bürger

& Lynch, 1995; Jones, 2008).Our results show that both

episodic and stochastic movements of the optimum

increase the likelihood that a population will drop below

its carrying capacity (Table S5). Such preludes to extinc-

tion occur even though the long-term average rate of

movement of the optimum is the same as in the steadily

moving optimum case. In the case of episodic movement,

the effect results from the extremely strong selection

imposed immediately after a shift in the optimum. In the

case of stochastic movement, the effect results from the

tendency for stochasticity to cause the optimum to some-

times move in directions that are misaligned with the

genetic line of least resistance. Thus, stochasticity is most

costly with respect to population persistence when the

G-matrix is especially eccentric and when the amount of

stochasticity is large (Table S5).
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Fig. 3 Data from a simulation run in

which the optimum moves steadily

over 4000 generations, showing the size

(Σ), the inverse measure e of
eccentricity and the angle φ of the

G-matrix, as well as the trait one

selection gradient (b1). In this example,

the optimum is moving in a positive

direction for both traits (↗), and
Dh1 = Dh2 = 0.007071. We assume no

selectional correlation (rx = 0) and a

positive mutational correlation

(rl = 0.5), which explains the positive

angle of G. Other parameter values are

the same as those for other simulation

runs, and their precise values can be

found in the Table 2 legend. In this

model, directional selection occurs

when the population mean is displaced

from the optimum, so the value of b1 is

directly proportional to the lag (L1).
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Peak movement, enhancement of genetic variance
and genetic lines of least resistance

In the absence of other constraints, directional selection

creates genetic lines of least resistance that facilitate a

response to selection by the mean as a result of the

aforementioned variance enhancement effect. This

effect occurs regardless of the model of peak movement

and is apparent from inspection of Tables S1–S3.
Figure 7 presents a graphical depiction of these results

by showing G-matrices under a stationary optimum

compared with those under a moving optimum for sev-

eral different parameter values. We show results for a

steadily moving optimum and a stochastically moving

optimum, but results from an episodically moving opti-

mum are nearly identical to those from a steadily

moving optimum (compare Tables S1 and S2). In the

absence of mutational and selectional constraints

(rl = rx = 0), the G-matrix aligns with the direction of

peak movement (Fig. 7, upper left). If we include sto-

chasticity in the movement of the optimum (Fig. 7,

upper right), we see a slightly larger G-matrix that is

less well aligned with the direction of peak movement.

Finally, when other constraints are present (Fig. 7,

bottom panels), the direction of peak movement cannot

completely overwhelm these other factors. Neverthe-

less, even under these conditions, the direction of peak

movement still has a major effect on the overall size

and shape of the G-matrix.

Net-b and the Turelli effect

In Table 3, we present the results of retrospective

analysis of selection and calculation of the Turelli

effect for the case of a steadily moving optimum. In

Table 4, we compare results from the different models

of peak movement. Several salient insights can be

gleaned from Table 3. One important observation is

that the movement of the optimum does not necessar-

ily translate directly into the value of net-b. Rather,

the relationship between peak movement and the

value of net-b depends on numerous factors, not the

least of which are the values of the mutational and

selectional correlations. This nonequivalence between

net-b and the direction of peak movement is most

obvious when the mutational correlation and the

selectional correlation are both positive and the opti-

mum moves directly to the right (i.e. Dh1 > 0,

Dh2 = 0). Even though the optimum for trait two is

stationary, the value of net-b2 is negative, because the
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Fig. 4 Data from a simulation run in

which the optimum moves episodically

over 4000 generations, showing the size

(Σ), the inverse measure e of
eccentricity and the angle φ of the

G-matrix, as well as the value of the

trait one selection gradient (b1). In this

case, the optimum shifts every 250

generations by an amount 250 times

greater per shift than those modelled in

Fig. 3. As in Fig. 3, the optimum is

moving up and to the right (↗), so each

shift results in an increase of 1.768 for

the optimum of each trait. This increase

is slightly larger than a single

phenotypic standard deviation under

the parameter values used here. The

other parameters for this simulation run

are identical to those for Fig. 3. The

striking result from episodic movement

of the optimum is that the total additive

genetic variance shows distinctive

cyclical fluctuations (top panel). This

pattern is caused by the repeated spikes

in the selection gradient (bottom

panel).

ª 20 1 2 THE AUTHORS . J . E VOL . B I OL . 2 5 ( 2 0 12 ) 2 21 0 – 2 23 1

JOURNAL OF EVOLUT IONARY B IOLOGY ª 2012 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

2220 A.G. JONES ET AL.



positive genetic correlation causes trait two to be dis-

placed from its optimum as trait one responds to its

moving optimum.

Perhaps the most disturbing feature of Table 3 is that

the values of net-b reconstructed by applying eqn (7)

substantially underestimate the actual values of net-b,
as calculated on a generation-by-generation basis

according to eqn (2). These underestimates occur

whether we reconstruct net-b by using the average

G-matrix (G) across the entire simulation run, which

would of course never be accessible in an empirical

study of evolution covering any appreciable length of

evolutionary time, or the G-matrix at the end of the

simulation run (GT). The cloud’s silver lining is that the

angle of the actual net-b, which is easily calculated as

the arctangent of net-b2/net-b1, is almost always in

close agreement with the angle of the reconstructed

net-b (Table 3). Thus, even under the parameter values

used in this study, which involved relatively strong cur-

vature of the selection surface and a rapidly moving

optimum, the reconstruction of net-b does a reasonable

job of approximating the overall direction of net selec-

tion but nearly always underestimates its magnitude

(Table 3).

It would be tempting to conclude that the Turelli

effect is the cause of the discrepancy between the

actual net-b and the reconstructed net-b, but our

results fail to support such a conclusion. Table 3 shows

that the Turelli effect does occur (i.e. G and b covary to

some degree), and the sign of the Turelli effect is in the

correct direction to partially offset the difference

between the actual net-b and the reconstructed net-b.
However, the magnitude of the Turelli effect is too

small by approximately an order of magnitude to

explain the discrepancy (Table 3).

Analogous results regarding the reconstruction of

net-b and the Turelli effect hold for episodic and sto-

chastic models of peak movement. In Table 4, we

present results for a subset of parameter combinations

shown in Table 3 under different models of peak

movement. With respect to episodic movement of the

optimum, we find that the results are almost identical

to those under steady movement (Table 4). However,

we do see a very slight tendency for the Turelli effect

to be larger in the episodic case. This difference is

much smaller than we expected and is not enough to

have an appreciable effect on the reconstruction of

net-b. Under stochastic movement of the optimum, we
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Fig. 5 Data from a simulation run in

which the optimum moves

stochastically over 4000 generations,

showing the size (Σ), the inverse

measure e of eccentricity, and the angle

φ of the G-matrix, as well as the trait

one selection gradient (b1). The
parameter values used in this figure are

the same as those used for Figs 3 and 4,

except in this case the optimum moves

every generation at the same average

rate as that in Fig. 3 but with an

element of stochasticity. In this case, we

have r2h1 ¼ r2h2 ¼ 0:01. The most

obvious patterns here are the highly

variable values of the selection gradient

(the selection gradient for trait two

shows a very similar pattern), and the

greater variation in the other variables

compared to the steadily moving

optimum case (Fig. 3).
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Fig. 6 The effects of episodic peak

movement on the additive genetic

variance and the selection gradient.

Each graph covers 1500 generations of

evolution, and each point on the graph

is a mean across 20 independent

simulation runs. The thin dashed lines

surrounding the points for G11 and G22

represent 95% confidence intervals.

The results shown here are those for an

optimum moving directly to the right,

so the average value of Dh1 is 0.01 per

generation and Dh2 is held constant

at 0. The top two graphs show episodic

movement, with the trait one optimum

shifting by 2.5 units every 250

generations (a) or 1.0 unit every 100

generations (b). The bottom graph

shows results for a steadily moving

optimum. This graph illustrates the

spikes in the selection gradient (b1) that
occur under episodic peak movement

and the increase in genetic variance

that occurs as the population evolves

towards this new optimum. Also, notice

that even though the selection gradient

for trait two (b2) stays near zero, the
trait two genetic variance (G22) also

shows some cyclical behaviour as a

result of pleiotropy. These runs used

our core set of parameter values

(see Table 2), with rx = rl = 0.
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find that net-b tends to be smaller for the same

amount of net movement of the optimum, which is

consistent with the higher additive genetic variance

maintained under stochastic movement. Otherwise,

the discrepancies between the actual net-b and the

reconstructed net-b are still present. The Turelli effect

remains small under stochastic movement but becomes

unpredictable, as evidenced by the large standard

errors in Table 4.

Explaining the discrepancy between reconstructed
and actual net-b

Part of the discrepancy between the actual and recon-

structed net-b can be explained by recalling that the

value of b is closely related to the lag of the mean

phenotype relative to the moving adaptive peak, and

the lag may be sensitive to deviations from the

assumption of normality of breeding values, as shown

by eqns (4) and (6). Assuming a normal distribution

of breeding values, the expected lag is given by

eqn (3). However, the larger than expected actual val-

ues of b indicate that the observed lag in our simula-

tions is larger than that predicted by the Gaussian

theory.

In Table 5, we present the actual lag for each trait,

calculated directly from the observed values in each

generation, as well as the expected lag based on

eqn (3) or on eqn (6). We apply eqn (3) in two differ-

ent ways. In the first case, we calculate the expected

lag at the end of the run by using the average

G-matrix in eqn (3). In the second case, we calculate

the expected lag on a per-generation basis based on

the G-matrix for that generation and then average the

lag across generations. These calculations show that

the expected lag is consistently smaller than the actual

lag, indicating that the response to selection is weaker

than expected.

Indeed, calculation of the expected lag, Λ, based

on eqn (6), which takes into account the third

moment of the distribution of breeding values, pro-

duces a much more accurate estimation of the lag

than the estimate based on eqn (3). However, even

eqn (6) shows a slight tendency to underestimate the

lag, a phenomenon that may be attributable to the

Turelli effect or the neglect of even higher moments.

The last two columns in Table 5 show that the

skewness in the breeding values induced by the mov-

ing optimum affects both the estimation of lag and

the estimation of b to a similar degree, which is to

be expected since the lag and b are so closely inter-

twined. In short, our analyses show that estimates of

the lag and b are affected by the skewness in breed-

ing values, which is caused by directional selection

acting on the population. Taking into account the

skewness, we achieve a much better estimate of the

expected lag (Table 5).

Discussion

This investigation fills a void in our understanding of

the evolution of the G-matrix by addressing models of

peak movement that are more realistic than those used

in previous studies. Previous studies addressed station-

ary peaks (Jones et al., 2003; Guillaume & Whitlock,

2007; Revell, 2007) or peaks that moved at a constant

rate in a completely deterministic fashion (Jones et al.,

2004). However, real adaptive peaks almost certainly

move episodically, and long periods of stasis likely alter-

nate with occasional large jumps (Uyeda et al., 2011).

Peak movement probably also includes an additional

element of stochasticity, determined by changing com-

munity compositions, climatic variation, and other erra-

tic aspects of the environment. Hence, unpredictable

generation-to-generation changes in the position of the

optimum may belie a long-term directional trend. Our

investigation of these more realistic models of peak

movement leads to several unexpected insights into the

evolutionary dynamics of the G-matrix and its response

to selection.

Our primary motivation for undertaking this line of

research was that previous studies had failed to explore

the conditions that seemed especially unfavourable for

the stability of the G-matrix and the reconstruction of

the net selection gradient. A priori, we predicted that

both episodic and stochastic movement of the optimum

would result in less stable G-matrices compared with a

steadily moving optimum. We also expected that an

episodically moving optimum would generate covari-

ance between G and b, which would result in a large

Turelli effect and confound the reconstruction of net-b
(Shaw et al., 1995; Turelli, 1988). Surprisingly, very

few of these predictions were unequivocally supported

by our results.

Evolution of the G-matrix under episodic peak
movement: the invariance principle

When we consider an episodically moving optimum,

one of the most surprising results of our analysis is that

the average values of the variables describing the

G-matrix and the average values of the per-generation

changes in these variables are almost the same under

an episodically moving optimum as under a steadily

moving optimum with the same long-term average rate

of movement. In addition, Table S4 shows that the

standard deviations of G-matrix variables tend to be the

same whether the optimum moves steadily or episodi-

cally. Even though the average G-matrix and the aver-

age per-generation changes in the G-matrix are the

same under an episodically moving optimum as under

a steadily moving optimum, we do see some important

differences in the evolution of G between these modes

of peak movement. The most striking difference is that

an episodically moving optimum induces predictable,
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cyclical changes in the G-matrix (Figs 4 and 6). In par-

ticular, immediately after a major shift in the optimum,

the strength of directional selection spikes, and as the

population responds to this directional selection, the

amount of additive genetic variation in the population

increases, only to decrease again once the population

reaches the optimum. It is also worth noting that the

G-matrix increases in eccentricity during the period of

directional selection, and the stability of the angle tends

to be higher for more eccentric G-matrices (Fig. S1).

This result is important for the interpretation of the

response to selection, because a population that has

experienced a recent history of stabilizing selection will

provide quantitatively different predictions with respect

to its ability to respond to long-term changes in the

optimum compared with a population that has experi-

enced a recent history of directional selection.

Evolution of the G-matrix under stochastic
movement of the optimum

Stochastic movement of the optimum also has clear

effects on the evolution of the G-matrix. One of the

most obvious and important effects is that stochastic

peak movement increases the total additive genetic var-

iance in the population compared with steady or epi-

sodic movement (Table 2, Fig. 7). This increase in

additive genetic variance, though not large, has the

important effect of reducing the average lag in popula-

tions evolving in response to a stochastically moving

optimum. Thus, the sort of environmental unpredict-

ability that we modelled here seems to favour the

maintenance of additive genetic variance.

Another notable difference between the stochastic

and deterministic modes of peak movement is that sto-

chastic movement reduces the impact of the direction

of peak movement on the evolution of the G-matrix.

Hence, when the optimum moves in a direction that

favours the evolution of an eccentric G-matrix with a

stable angle under a steadily moving optimum, the

addition of stochasticity results in a less eccentric

G-matrix with a less stable angle. On the other hand,

whenever the direction of peak movement produces a

highly unstable G-matrix under a steadily moving opti-

mum, the addition of stochasticity actually results in a

more stable G-matrix. Thus, as might be expected, sto-

chasticity in the movement of the optimum amelio-

rates the effects of optimum movement per se on

G-matrix eccentricity and stability of the angle

(Table 2, Fig. 2).

As in the case of an episodically moving optimum,

stochasticity has very little effect on the average per-

generation changes in most variables describing the

G-matrix (other than the angle, which it does affect).

However, when we consider the standard deviations

of these variables across the entire simulation run,

we do see significant effects (Table S4). For instance,

Static
optimum

Moving
optimum

Direction of peak 
movement

Steady movement, rω = 0, rμ = 0 Stochastic, rω = 0, rμ = 0, σθ = 0.022

Steady movement, rω = 0.75, rμ = 0 Steady movement, rω = 0, rμ = 0.5

Fig. 7 A visual representation of two important phenomena

observed in this study. The first is that a moving optimum

increases the total additive genetic variance in the population

relative to equilibrium variance when the optimum is stationary.

The second phenomenon is that, in the absence of other

constraints, a moving optimum causes the G-matrix to orient

towards the direction of peak movement. Here, we represent the

G-matrix as a confidence ellipse surrounding 95% of the

breeding values in the population (Jones et al., 2004). Thus,

larger ellipses represent populations with greater amounts of

additive genetic variance, and the long axis of the ellipse shows

the direction in phenotypic space that harbours the lion’s share

of additive genetic variance. The upper left panel shows results

for a steadily moving optimum, under the parameter values used

for Table 2, except with rx = rl = 0. The G-matrix on the left is

the average G-matrix observed under a stationary optimum, the

three bold arrows represent the three directions of peak

movement, and the three ellipses on the right show the average

G-matrices that are observed under the corresponding directions

of peak movement. Note that in the upper left panel, the

average G-matrices are larger under a moving optimum and

oriented towards the direction of peak movement. The upper

right panel shows the results for the same average amount of

peak movement, but with stochasticity in the movement of the

optimum. Note that the G-matrices here are slightly larger and

less perfectly oriented compared with those in the upper left

panel. Finally, the bottom two panels show results for runs with

a positive selectional and mutational correlation, respectively. In

these cases, the direction of peak movement can reinforce or

oppose the effects of the mutational and selectional correlations

on the shape and orientation of the G-matrix, depending on

whether the direction of peak movement is aligned with the

value of the mutational or selectional correlation.
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Table 3 Results of retrospective analysis of selection under different parameter combinations with steady movement of the optimum

(r2h1 ¼ r2h2 ¼ 0Þ. The net Dh1 and Dh2 columns show the average total distance the optimum moved in units of environmental standard

deviation over 4000 generations of evolution. The actual values of net-b were calculated by estimating b each generation using eqn (2) and

summing over generations. Other columns show net-b calculated from retrospective selection analysis, from either the mean G-matrix (�G)

or the final G-matrix at generation 4000 (GT) using eqn (7). The final two columns show the Turelli effect, τ, calculated from eqn (9). All

results in this table are means across 20 independent simulation runs. The parameter values not shown are identical to those used in

Table 2. The last row shows the mean standard errors (calculated across the 20 simulation runs) of the estimates in each column.

rl rx Dh net Dh1* net Dh2

Actual values Estimation from �G Estimation from GT Turelli effect

Net-b1 Net-b2 Angle Net-b1 Net-b2 Angle Net-b1 Net-b2 Angle τ1 τ2

0 0 ↗ 28.3 28.3 62.4 60.2 44.0 48.5 47.1 44.2 47.8 47.2 44.6 �1.7 �1.3

0 0 ? 40.0 0.0 85.8 �1.1 �0.7 67.8 �0.5 �0.4 69.3 �0.1 �0.1 �2.3 0.1

0 0 ↘ 28.3 �28.3 61.9 �61.8 �45.0 48.2 �48.9 �45.4 50.1 �50.4 �45.2 �1.5 1.4

0.5 0 ↗ 28.3 28.3 51.2 54.7 46.9 40.5 42.2 46.2 42.1 44.6 46.7 �1.1 �1.2

0.5 0 ? 40.0 0.0 93.7 �20.9 �12.6 76.7 �22.6 �16.4 79.3 �20.2 �14.3 �2.4 0.7

0.5 0 ↘ 28.3 �28.3 80.5 �79.6 �44.7 68.0 �68.9 �45.4 68.7 �71.9 �46.3 �2.3 2.0

0 0.75 ↗ 28.3 28.3 57.9 55.8 43.9 44.3 46.2 46.2 49.9 51.2 45.7 �2.0 �2.0

0 0.75 ? 40.0 0.0 119.8 �60.1 �26.6 90.4 �35.9 �21.7 99.1 �38.6 �21.3 �2.9 0.8

0 0.75 ↘ 28.3 �28.3 109.3 �108.5 �44.8 80.7 �80.9 �45.1 81.0 �84.0 �46.0 �2.4 2.1

0.5 0.75 ↗ 28.3 28.3 46.2 42.8 42.8 34.0 34.0 45.0 32.6 35.6 47.5 �1.1 �1.3

0.5 0.75 ? 40.0 0.0 126.2 �78.1 �31.8 100.5 �59.7 �30.7 99.0 �58.3 �30.5 �2.6 1.5

0.5 0.75 ↘ 28.3 �28.3 123.6 �124.5 �45.2 100.3 �100.4 �45.0 99.2 �100.8 �45.5 �2.8 3.2

0.5 �0.75 ↗ 28.3 28.3 101.4 101.0 44.9 73.2 73.5 45.1 77.7 80.3 45.9 �1.6 �2.1

0.5 �0.75 ? 40.0 0.0 131.6 35.4 15.1 101.5 9.0 5.1 106.9 9.0 4.8 �3.7 0.5

0.5 �0.75 ↘ 28.3 �28.3 83.9 �82.3 �44.4 71.9 �69.5 �44.0 68.1 �69.5 �45.6 �3.0 3.0

Mean SE of estimates 1.2 1.3 0.9 0.9 2.9 3.0 0.2 0.2

*Distances of 28.3 and 40.0 environmental standard deviations are equivalent, respectively, to about 23 and 33 phenotypic standard

deviations.

Table 4 Results of retrospective analysis of selection under different parameter combinations with episodic or stochastic movement of the

optimum. The net Dh1 and Dh2 columns show the average total distance the optimum moved in units of environmental standard deviation

over 4000 generations of evolution. The values of net-b and the Turelli effect, τ, are calculated as in Table 3. All results in this table are

means across 20 independent simulation runs. Those parameter values not shown are identical to the ones used for Table 2. The standard

errors for the variables shown in this table are much smaller than the means (similar to those shown in Table 3), except for the standard

errors of some estimates of the Turelli effect. These standard errors are given in parentheses in the last two columns. An entry of "xxx"

indicates that some populations dropped below their carrying capacities under the corresponding parameter values and consequently were

not analysed.

rl rx Dh Interval r2h

Net

Dh1*

Net

Dh2

Actual values Estimation from �G Estimation from GT Turelli effect

Net-

b1

Net-

b2 Angle

Net-

b1

Net-

b2 Angle

Net-

b1

Net-

b2 Angle τ1 (SEM) τ2 (SEM)

0 0 ? 1 0 40.0 0.0 85.8 �1.1 �0.7 67.8 �0.5 �0.4 69.3 �0.1 �0.1 �2.3 (0.2) 0.1 (0.1)

0.5 0 ? 1 0 40.0 0.0 93.7 �20.9 �12.6 76.7 �22.6 �16.4 79.3 �20.2 �14.3 �2.4 (0.1) 0.7 (0.2)

0 0.75 ? 1 0 40.0 0.0 119.8 �60.1 �26.6 90.4 �35.9 �21.7 99.1 �38.6 �21.3 �2.9 (0.2) 0.8 (0.3)

0 0 ? 100 0 40.0 0.0 85.9 �0.4 �0.3 68.2 �0.1 �0.1 73.0 0.9 0.7 �2.3 (0.2) 0.1 (0.2)

0.5 0 ? 100 0 40.0 0.0 93.6 �22.1 �13.3 76.5 �22.6 �16.5 81.7 �23.4 �16.0 �2.4 (0.2) 1.0 (0.2)

0 0.75 ? 100 0 40.0 0.0 121.7 �59.1 �25.9 90.9 �35.3 �21.2 97.4 �41.9 �23.3 �3.1 (0.2) 1.2 (0.2)

0 0 ? 250 0 40.0 0.0 85.0 0.2 0.1 66.5 0.8 0.7 84.0 0.6 0.4 �2.8 (0.2) 0.0 (0.2)

0.5 0 ? 250 0 40.0 0.0 91.9 �21.4 �13.1 75.1 �22.7 �16.8 81.9 �25.4 �17.2 �2.8 (0.2) 1.2 (0.3)

0 0.75 ? 250 0 40.0 0.0 xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx

0 0 ? 1 0.01 40.0 0.0 78.4 �2.1 �1.5 64.9 �1.2 �1.1 72.2 0.6 0.5 0.4 (0.5) 0.3 (0.5)

0.5 0 ? 1 0.01 40.0 0.0 87.5 �21.5 �13.8 75.2 �23.1 �17.1 83.3 �25.4 �17.0 1.3 (0.6) 0.2 (0.5)

0 0.75 ? 1 0.01 40.0 0.0 104.9 �54.3 �27.4 84.6 �39.8 �25.2 95.7 �48.2 �26.7 3.7 (0.8) �3.8 (0.9)

0 0 ? 1 0.02 40.0 0.0 75.4 �4.0 �3.0 64.8 �2.4 �2.1 66.3 �2.3 �3.0 1.8 (0.3) 1.5 (0.8)

0.5 0 ? 1 0.02 40.0 0.0 82.0 �22.5 �15.3 73.3 �23.6 �17.8 77.8 �25.5 �18.1 2.0 (0.8) 1.4 (0.8)

0 0.75 ? 1 0.02 40.0 0.0 xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx

*A distance of 40.0 environmental standard deviations is equivalent to about 33 phenotypic standard deviations.
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a stochastically moving optimum results in a large

increase in the standard deviations of the additive

genetic variances and the eccentricity of the G-matrix.

Thus, these results support the notion that stochastic

movement of the optimum results in a less stable

G-matrix.

Increased G-matrix stability via the variance
enhancement effect

Another key result, which occurs regardless of the

model of peak movement, is that directional selection

alone, in the absence of mutational or selectional corre-

lations, promotes G-matrix stability (Table 2, Fig. 7).

The stability-conferring effects of peak movement are

caused by the tendency of a moving peak to result in a

higher equilibrium level of additive genetic variance

compared to a stationary peak, in particular in the

direction of the moving peak. An increase in genetic

variation under various forms of directional selection

has been observed previously, both for a single trait

(Barton & Turelli, 1987; Bürger, 1993; Bürger & Lynch,

1995) and for two pleiotropically coupled traits (Jones

et al., 2004). This increase in variance requires suffi-

ciently large population size and is apparently due to

recurrent favourable mutations sweeping towards

fixation (Bürger, 2000; Chap. VII.7; see also Turelli,

1985; Wagner, 1989; Baatz & Wagner, 1997). The

genetic basis of the adaptation of a univariate trait to a

moving optimum, especially with respect to the proper-

ties of the selective sweeps and the distribution of the

substitutions, is addressed in detail by Kopp & Hermis-

son (2009a,b).An important point is that this variance

enhancement effect compares the effects of directional

selection (caused by a moving peak) to the effects of

stabilizing selection (under a stationary peak) rather

than to expectations under neutrality. Although the

variance observed under a moving optimum is higher

than that under pure stabilizing selection, it is always

lower than under (neutral) mutation–drift balance

(Lynch & Hill, 1986; Bürger & Lynch, 1995).

An evolving G-matrix, the net selection gradient and
the Turelli effect

Our results provide some novel perspectives regarding

the effects of selection over long periods of evolutionary

time. Two results of the present analysis appear to be

especially important and general. The first result is the

one just discussed: the movement of the optimum

causes an increase in additive genetic variation in

the direction of optimum movement, which in turn

Table 5 An analysis of the lag under different parameter combinations and directions of peak movement, with steady movement of the

optimum. The first three columns indicate the mutational correlation (rl), the selectional correlation (rx) and the direction of peak

movement (Dh), where ↗ means Dh1 = Dh2 = 0.0071, ? means Dh1 = 0.01 and Dh2 = 0 and ↘ means Dh1 = 0.0071 and Dh2 = �0.0071.

L1 and L2 show the actual lag, which is the observed difference between the optimum and the phenotypic mean, averaged across the 4000

generations. We also show two values of the expected lag under the assumption of Gaussian breeding values. L1;�G and L2;�G are the

expected lag for each trait calculated from eqn (3) using the average G-matrix from the simulation run. L1,G(t) and L2,G(t) are also expected

lags based on eqn (3), but in this case they are calculated by applying eqn (3) each generation and averaging across the values of expected

lag calculated each generation. We also present the expected lag based on eqn (6), which relaxes the Gaussian assumption. We apply the

equation every generation and average across the 4000 experimental generations. These values are Λ1,G(t) and Λ2,G(t). The penultimate

column shows the ratio of the expected lag for trait one with the assumption of Gaussian breeding values to that without the Gaussian

assumption. The final column shows the ratio of the reconstructed net-b1 to the actual net-b1 (from Table 4), illustrating that the skewness

affecting the expected lag also largely accounts for the underestimation of net-b. The data shown in this table are from the same simulation

runs as those used for Table 4. The last row shows the mean standard errors of each column.

rl rx Dh L1 L2 L1;�G L2;�G L1,G(t) L2,G(t) Λ1,G(t) Λ2,G(t)
L1;�G
K1;GðtÞ

b1;�G
b1;actual

0 0 ↗ 0.165 0.159 0.128 0.125 0.133 0.129 0.159 0.154 0.81 0.82

0 0 ? 0.227 �0.003 0.180 �0.001 0.186 �0.001 0.219 �0.002 0.82 0.84

0 0 ↘ 0.164 �0.163 0.127 �0.129 0.131 �0.133 0.157 �0.158 0.81 0.82

0.5 0 ↗ 0.137 0.146 0.108 0.112 0.111 0.116 0.135 0.141 0.80 0.87

0.5 0 ? 0.246 �0.052 0.202 �0.056 0.208 �0.059 0.239 �0.050 0.84 0.87

0.5 0 ↘ 0.209 �0.207 0.177 �0.180 0.184 �0.186 0.203 �0.202 0.87 0.87

0 0.75 ↗ 0.248 0.246 0.196 0.198 0.205 0.206 0.241 0.241 0.81 0.82

0 0.75 ? 0.211 0.051 0.175 0.063 0.181 0.066 0.205 0.051 0.86 0.79

0 0.75 ↘ 0.100 �0.096 0.072 �0.073 0.074 �0.075 0.095 �0.090 0.76 0.77

0.5 0.75 ↗ 0.197 0.194 0.150 0.149 0.155 0.155 0.192 0.190 0.78 0.80

0.5 0.75 ? 0.196 0.017 0.161 0.020 0.165 0.021 0.188 0.016 0.85 0.83

0.5 0.75 ↘ 0.107 �0.111 0.088 �0.089 0.090 �0.092 0.101 �0.105 0.87 0.83

0.5 �0.75 ↗ 0.093 0.091 0.066 0.068 0.067 0.070 0.087 0.088 0.76 0.76

0.5 �0.75 ? 0.282 �0.132 0.249 �0.149 0.260 �0.158 0.278 �0.134 0.89 0.81

0.5 �0.75 ↘ 0.357 �0.355 0.303 �0.301 0.317 �0.315 0.353 �0.351 0.86 0.88

Mean SE of estimates 0.003 0.003 0.002 0.002 0.002 0.002 0.003 0.003
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facilitates a response to selection by the trait mean. The

second result is that, because the mean lags behind the

optimum, selection causes the distribution of breeding

values to become skewed in the direction of peak

movement, a situation that actually retards a response

to selection by the mean. These two opposing phenom-

ena do not precisely offset one another, so both must

be considered in the reconstruction of net-b. Unfortu-

nately, no simple method exists to correct estimates of

net-b in the light of these issues, because the magni-

tude of each effect appears to depend on a wide range

of factors. Nevertheless, awareness of the issues will at

least lead to caution in interpretation of the history (or

future) of the response to selection in any given

system.

Of course, the most convenient way to estimate

Lande’s net selection gradient is to assume a constant

G-matrix (Price & Grant, 1985; Arnold, 1988; Merilä

et al., 1994; Cheverud, 1996; Dudley, 1996), but our

results show that such an approach may only give a

rough approximation of the history of peak movement

experienced by a lineage. The most troubling observa-

tion in our current study with respect to net-b is that

directional selection can result in skewed breeding val-

ues, which makes the Gaussian approximation inaccu-

rate. When we use the Gaussian assumptions for the

expected lag and net-b, we find that both coordinates

deviate from the actual values, often by 20% or more.

In particular, populations lag farther behind the opti-

mum than expected, and a stronger b than expected is

required to produce the observed response to selection

(Tables 3–5). If we estimate the expected lag based on

theory that takes into account the skewness in breeding

values (eqn (6) and Appendix I), however, we find that

the expected lag much more closely approaches the

actual lag, confirming that this skewness is the major

source of discrepancy between expectations under the

Gaussian theory and observed values.

Despite the fact that selection induces skewness in

breeding values, the reconstruction of a meaningful

net-b may still be possible. One encouraging observa-

tion is that, even though the values of net-b were

quite far from the mark in terms of magnitude, the

angle of the reconstructed net-b was usually close to

the true angle. A second encouraging observation is

that on a selection surface with less curvature (i.e.

x11 = x22 = 49), Jones et al. (2004) found that the

reconstructed net-b was very close to the actual net-b,
suggesting that the skewness problem applies to a les-

ser extent when stabilizing selection is weak, a conclu-

sion which is also supported by analytical theory.

Finally, as we have shown in Table 5, the ratio of the

expected value of lag under the Gaussian assumption

to the expected value of lag taking into account the

skewness is similar to the ratio of the reconstructed

net-b to the true net-b. This observation implies that

the discrepancy between the expected lag calculated

using eqn (3) and that calculated from eqn (6) can

provide a rough idea of how far the reconstructed

net-b differs from the actual net-b, assuming the pres-

ent skewness in the phenotypic distribution is repre-

sentative of the skewness in breeding values over the

time frame of interest.

The final point of relevance to the reconstruction of

net-b concerns the Turelli effect. We expected an epi-

sodically moving optimum to result in a much higher

covariance between G and b compared with a steadily

moving optimum, which would result in much larger

values of the Turelli effect, further compromising the

estimation of net-b. Contrary to our expectations, the

Turelli effect is small relative to the value of b under

all models of peak movement. Episodic peak move-

ment appears to result in a very small increase in the

Turelli effect relative to steady peak movement

(Table 4), but the absolute value of the Turelli effect

remains < 3% the value of net-b. Under a stochasti-

cally moving optimum, the Turelli effect also is small,

but is much more variable among runs. Thus, we con-

clude that, compared with skewed breeding values,

the Turelli effect is not a major problem for the recon-

struction of net-b under most realistic models of peak

movement.

The model of peak movement and population
persistence

We found that episodically and stochastically moving

optima increase the probability that a population will

drop below its carrying capacity relative to a population

that experiences a stationary optimum or a peak that

moves steadily in a single direction. A population can

persist in a changing environment when the trait mean

is able to evolve at a rate that is at least as fast as the

rate at which the optimum moves (Lynch & Lande,

1993; Bürger & Lynch, 1995). When the optimum

moves a large distance in a single generation, the entire

population will experience a sudden drop in average

fitness that can be dramatic enough to prevent the pop-

ulation from being able to produce enough surviving

offspring to remain above the carrying capacity. Fur-

thermore, when the optimum moves stochastically, it

will sometimes move in a direction that crosses genetic

lines of least resistance. Under these circumstances, the

population may have insufficient additive genetic vari-

ance in the direction of the optimum shift to evolve

towards its new location. This situation is most likely to

arise when genetic correlations are strong, because the

eccentricity of the G-matrix will then be a major con-

straint. Thus, we conclude that both episodic and sto-

chastic models of peak movement are more likely to

cause a population to drop below its carrying capacity

and by extension face a heightened risk of extinction,

compared to a population with a steadily, deterministi-

cally moving optimum.
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Limitations and conclusions

The type of simple model employed here has some

limitations, and future work correcting some of these

shortcomings could pay dividends. One of the major

features of our model is the assumption of only addi-

tive genetic effects. This limitation is partially a model-

ling convenience, because restricting the model to

additive effects results in a number of favourable fea-

tures related to the estimation of the G-matrix and

interpretation in the light of existing theory. However,

real systems probably include substantial components

of dominance and epistasis, so future studies could

profitably explore these more complicated models of

inheritance. In addition, many of our most important

results probably rely heavily on the way we model

mutations. We assume a Gaussian distribution of

mutational effects and that mutants have no pleiotro-

pic deleterious side effects. Mutational effects could in

principle follow a more leptokurtic pattern in which

major mutations sometimes occur (see e.g. Zhang &

Hill, 2003) or mutations could be mostly deleterious

(Zhang et al., 2004), a situation that would certainly

affect our results. We also make a number of other

assumptions, such as an exceptionally high mutation

rate, which are discussed in some detail in previous

papers (Jones et al., 2003, 2004). Future models,

incorporating more realistic assumptions regarding

mutation rates and mutational effects, will no doubt

shed additional light on the issues addressed in the

present study.

In conclusion, our results shed new light on aspects

of G-matrix evolution under more realistic models of

movement of the optimum than have heretofore been

explored. Our results provide new insights into general

effects of the operation of selection, the maintenance of

genetic variation, the reconstruction of net-b and the

effects of peak movement on population persistence.

Although these results appear to make the already

complex study of selection even more difficult, our sim-

ulations uncover several generalizations that simplify

our understanding of how peak movement affects the

evolution of both the multivariate mean and the

G-matrix.
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Appendix 1: Multivariate selection
response and lag with skewed breeding
values

Our aim here is to derive the response to general selec-

tion of the mean vector of breeding values of a multi-

variate trait without making assumptions on the

distribution of breeding values. Then, we shall apply

this equation to derive the response to selection and

the lag for the moving optimum model used in the

main text.

We consider I traits, and the trait values of individu-

als are given by z1 = x1 + e1, z2 = x2 + e2, …,zI = xI + eI.

Thus, each individual is characterized by a column

vector of trait values (z), a column vector of genotypic

(i.e. breeding) values (x) and a column vector of envi-

ronmental effects (e). Let W(z) denote the fitness of

individuals of phenotype z, and w(x) the (average) fit-

ness of individuals of genotypic values x. Then,

clearly, the mean fitness satisfies W ¼ �w. If P(x)

denotes the distribution of breeding values, the exact

change in the distribution of breeding values caused

by selection is

DsPðxÞ ¼ PðxÞðwðxÞ �WÞ=W : (A.1)

We follow the approach devised by Bürger (1991)

and Turelli & Barton (1994) and use cumulants and

higher-order selection differentials to derive the mul-

tivariate selection response of the mean. Denoting

the moment-generating function of P(x) by W(ξ)
and the cumulant-generating function by Φ(ξ) =
ln(W(ξ)), the response to selection in terms of gen-

erating functions (Turelli & Barton, 1994; Bürger,

2000, p. 174) is

DsWðnÞ ¼
Z

Cðn; gÞ @ lnW

@UðgÞ dg; (A.2)

where Γ(ξ, g) = exp [W(ξ + g) � W(g)] � exp [W(ξ)]
We denote the multivariate cumulants of order 1, 2,

3, 4, … of the (multivariate) distribution of breeding

values by ji, jij, jijk, jijkl, …, respectively. The first-

order cumulants are just single-trait means, the second-

order cumulants are the genetic variances and covari-

ances, and the third-order cumulants are the third-

order central moments, that is,

ji ¼ �xi; jij ¼ Gij; jijk ¼
Z

ðxi � �xiÞðxj � �xjÞðxk � �xkÞdx:
(A.3)

Of course, i, j and k need not be different and the order

is irrelevant, thus jiij = jiji = jjii.
The response Ds�xi of the mean of trait i is obtained by

differentiating (eqn A.2) once with respect to ξi. Para-
phrasing the derivation of eqn (17a) in Turelli & Barton
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(1994) and specifying their formula to U = {i}(and
V = {i, j, k, …,}) produce the fundamental equation for

the selection response of the mean:

Ds�xi ¼
XI

j¼1

jij
@ lnW

@jj
þ

XI

j;k¼1

jijk
@ lnW

@jjk

þ
XI

j;k;l¼1

jijkl
@ lnW

@jjkl
þ � � � : (A.4)

Because recombination, symmetric mutation, random

mating and random genetic drift do not alter the means

(e.g. Bürger, 2000), the response of the means across

generations is also given by eqn (A.4), that is

D�xi ¼ Ds�xi.
In principle, the above approach could be generalized

to derive the response to selection of the variances,

covariances and higher cumulants of the distribution of

breeding values. However, as already envisaged in the

univariate case (Turelli & Barton, 1994; Bürger, 2000),

this leads to enormous complications because not only

the effects of recombination and genetic drift have to

be taken into account, but also genetic details, such as

number of loci and distribution of allelic effects at each

locus, influence the evolutionary dynamics of the cum-

ulants of order > 1.

Now we apply eqn (A.3) to our model. Assuming

weak selection, we can approximate the fitness of indi-

viduals with vector x of genotypic values by

wðxÞ ¼ 1� 1

2
x� hð ÞTX�1 x� hð Þ: (A.5)

Here, Ω is a matrix that describes the curvature of the

fitness landscape for breeding values, and h is the posi-

tion of the optimum. We write aij for the entries of the

I 9 I matrix Ω�1. In the notation of the main text,

Ω = x + E. Then

W � 1� 1

2

X
i;j

aij �xi � hið Þ �xj � hj
� �þ Gij


 �

¼ 1� 1

2

X
i;j

aijGij � 1

2
�x� hð ÞTX�1 �x� hð Þ; (A.6)

From eqn (A.4) and because all partial derivatives of W

with respect to cumulants of order higher than two

vanish, the response of the genotypic means to selec-

tion is given by

D�xi �
XI

j¼1

Gij

@W

@�xj
þ

XI

j;k¼1

jijk
@W

@Gjk

: (A.7)

This formula is approximate only because we assumed

weak selection.

To present eqn (A.7) in instructive vector form, we

write

r�xW ¼ @W

@�x1
; . . .;

@W

@�xI

� 	T

; (A.8)

which is the classical selection gradient, and

rGW ¼ @W

@G11

; . . .;
@W

@GII

� 	T

; (A.9)

which is the second-order selection gradient (see

above) and a vector of length I2. Finally, we define the

I 9 I2 matrix

C ¼
j111 j112 � � � j11I � � � � � � j1I1 j1II
j211 j212 � � � j21I � � � � � � j2I1 j2II
..
. ..

. ..
. ..

. ..
.

jI11 jI12 � � � jI1I � � � � � � jII1 jIII

0
BBB@

1
CCCA:

(A.10)

Now we can cast (A.7) in matrix form:

D�x � Gr�xW þ CrGW : (A.11)

Simple calculations show that

@W

@�xj
¼ �

X
k

ajk �xk � hkð Þ; (A.12)

@W

@Gjk

¼ � 1

2
ajk: (A.13)

From now on, we assume a constantly moving opti-

mum, such that h(t) = tDh, where t is time in genera-

tions and Dh represents the amount the optimum

moves per generation. If the expected lag is defined as

K ¼ h� �x; then (A.12) yields

r�xW ¼ X�1K: (A.14)

Because for a constantly moving optimum, we must have

Dx ¼ Dh, a simple calculation invoking (A.11) produces

K � XG�1 Dh� CrGW
� �

: (A.15)

We use this equation in the main text, but use slightly

different notation for C for the sake of clarity. In the

two-trait case,

C¼ j111 j112 j121 j122
j211 j212 j221 j222

� 	
¼ c3;0 c2;1 c2;1 c1;2

c2;1 c1;2 c1;2 c0;3

� 	
;

(A.16)

where ci;j ¼
R

x1 � �x1ð Þi x2 � �x2ð ÞjPðxÞdx.
The attentive reader may note that in the absence of

skew, (eqn A.14) and (4) differ slightly from the Gauss-

ian prediction (3) because x + P 6¼ Ω. The reason is

that the derivation of eqn (A.14) assumes weak selec-

tion, which is not assumed in deriving (3). Clearly,

under weak selection, x + P = Ω + G � Ω.
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Supporting information

Additional Supporting Information may be found in the

online version of this article:

Table S1 Mean values of population-level genetic

variables and per-generation changes in these vari-

ables for an optimum that moves steadily, that is, the

optuimum moves every generation by a small

amount.

Table S2 Mean values of population-level genetic

variables and per-generation changes in these variables

for an episodically moving optimum.

Table S3 Mean values of population-level genetic

variables and per-generation changes in these variables

for a stochastically moving optimum.

Table S4 The variability in aspects of the G-matrix and

stability of these variables, as measured by the within-

run standard deviations.

Table S5 Combinations of simulation parameters that

resulted in the population dropping below the carrying

capacity (indicated by XX in the table below), a condi-

tion that meant the population could no longer replace

itself and was on the road to extinction.

Figure S1 The relationship between lag and eccentricity,

as well as eccentricity and the per-generation change in

the angle of G, under an episodically moving optimum.
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