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VISUALIZING MULTIVARIATE SELECTION!

PATRICK C. PHILLIPS AND STEVAN J. ARNOLD
Committee on Evolutionary Biology and Department of Ecology and Evolution, University of Chicago,
915 E. 57th Street, Chicago, IL 60637

Abstract. —Recent developments in quantitative-genetic theory have shown that natural selection
can be viewed as the multivariate relationship between fitness and phenotype. This relationship
can be described by a multidimensional surface depicting fitness as a function of phenotypic traits.
We examine the connection between this surface and the coefficients of phenotypic selection that
can be estimated by multiple regression and show how the interpretation of multivariate selection
can be facilitated through the use of the method of canonical analysis. The results from this analysis
can be used to visualize the surface implied by a set of selection coefficients. Such a visualization
provides a compact summary of selection coefficients, can aid in the comparison of selection
surfaces, and can help generate testable hypotheses as to the adaptive significance of the traits
under study. Further, we discuss traditional definitions of directional, stabilizing, and disruptive
selection and conclude that selection may be more usefully classified into two general modes,
directional and nonlinear selection, with stabilizing and disruptive selection as special cases of

nonlinear selection.
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Recent developments in quantitative-ge-
netic theory have yielded a coherent view
of how continuously varying phenotypic
traits evolve within populations (e.g., Lande,
1979, 1980, 1988). Implicit in this approach
is a multivariate characterization of natural
selection acting on many traits simulta-
neously (Thompson, 1977; Lande and Ar-
nold, 1983). This multidimensional view of
selection contrasts with standard textbook
accounts of directional and stabilizing se-
lection, which usually take a univariate ap-
proach (e.g., Grant, 1977; Ayala and Val-
entine, 1979; Cavalli-Sforza and Feldman,
1981; but see Schmalhausen [1949] and
Lerner [1954]). While the empirical litera-
ture shows an increasing tendency to con-
sider multivariate selection, usually only di-
rectional selection is analyzed (e.g., Price et
al., 1984; Berenbaum et al., 1986; but see
Price and Boag [1987]). Further, the im-
portance of multivariate stabilizing selec-
tion in visualizations of selection has not
been emphasized in recent monographs on
natural selection (Manly, 1985; Endler,
1986).

The univariate view of selection may pre-
vail because it is difficult to conceptualize
selection acting on many traits at once. For
example, in the univariate case, it is often
convenient to picture selection in terms of

! This paper is dedicated to the memory of Sewall
Wright (1889-1988).
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a fitness function acting on a continuously
varying trait (Fig. 1), whereas a multivariate
approach rapidly exhausts our capacity for
visualization. Despite this difficulty, it is well
worth the effort to view selection in a mul-
tidimensional context, for it is only in this
way that we can understand how selection
acts on more than one trait at a time and,
in particular, how selection affects and is
affected by the correlation between char-
acters. Our aim in this paper is, therefore,
to review some recent concepts of multi-
variate selection and to show how these con-
cepts can be visualized.

In the sections that follow, we briefly re-
view terminology and concepts of pheno-
typic selection in order to point out con-
nections with genetic change and with
multivariate visualization of selection. We
then introduce canonical analysis of selec-
tion surfaces, a technique that helps in the
interpretation of systems of selection coef-
ficients.

Modes of Selection

Natural selection has traditionally been
classified into three modes: directional, sta-
bilizing, and disruptive (e.g., Kimura, 1983
pp. 119-121; Endler, 1986 pp. 16-21). These
univariate modes of selection are usually
illustrated by a fitness function described by
aline, peak, or valley (Fig. 1a, b). Stabilizing
(disruptive) selection is thus characterized
by the existence of an intermediate opti-
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FiG. 1. Standard univariate views of selection act-
ing on a single trait, showing effects on trait distribu-
tions within a single generation. Solid, bell-shaped out-
lines indicate the trait distribution before selection;
stippled outlines show the trait distribution after se-
lection. Selection functions are shown above frequency
distributions: a) Directional selection under all defi-
nitions, b) stabilizing selection under all definitions; c)
traditionally defined as only directional selection, de-
fined as a combination of directional selection and sta-
bilizing selection by Lande and Arnold (1983), and
defined as a combination of directional and nonlinear
selection in this paper, d) a combination of directional
and stabilizing selection under all definitions.

mum (minimum) within the range of phe-
notypic expression. Lande and Arnold
(1983) proposed a slightly more general def-
inition of stabilizing and disruptive selec-
tion: curvature in the relationship between
fitness and the trait. These two definitions
come into conflict, however, when the fit-
ness function is curved but monotonic in-
creasing or decreasing (Fig. 1c). This could
occur, for example, if fitness approaches
some asymptotic value with increasing trait
values, or if the selective optimum is simply
not within the range of the current pheno-
typic distribution. Such a fitness function
would traditionally be defined as purely di-
rectional selection (e.g., Kimura, 1983;
Manly, 1985; Endler, 1986; Mitchell-Olds
and Shaw, 1987; Schluter, 1988), whereas
Lande and Arnold (1983) would classify this
as a combination of directional and stabi-
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lizing selection. Thus, there is potential for
confusion because of these two somewhat
distinct uses of terminology (see Schluter
[1988] for an example).

Modes of selection are probably most
usefully defined in terms of the changes in
the phenotypic distribution that are caused
by selection (Lande and Amold, 1983; En-
dler, 1986 p. 17). These changes can be
roughly divided into 1) change in the mean
and 2) changes in all other moments of the
phenotypic distribution. The change in the
mean of a phenotypic trait within a gener-
ation is the implied meaning of ““directional
selection,” and therefore, the relationship
between fitness and the trait that describes
the change in mean provides the best defi-
nition of directional selection. In the multi-
variate case, this relationship is given by the
partial linear regression of fitness on a set
of characters (see below; Lande and Arnold,
1983). Thus, directional selection is seen to
be a fundamentally linear process and has,
in fact, been called linear selection by Simp-
son (1953) and Spiess (1977).

The connection between directional se-
lection and the linear relationship between
fitness and a trait suggests that the other
modes of selection be defined in terms of
the nonlinear relationships between fitness
and traits that cause changes in the higher
moments of the phenotypic distribution. In-
deed, the presence of stabilizing selection
has often been inferred by the contraction
of variance (reviewed by Endler [1986)).
However, directional selection by itself can
also cause a change in variance (Lande and
Arnold, 1983), so only changes in the higher
moments beyond those caused by a change
in the mean should be considered to be in-
dicative of the presence of stabilizing or dis-
ruptive selection. It is this differentiation
between the change in variance caused by
directional selection and the change in vari-
ance attributable to stabilizing selection that
led Lande and Arnold (1983) to define sta-
bilizing and disruptive selection in terms of
curvature in the fitness function. For his-
torical reasons and to avoid confusion,
however, it seems desirable to retain the
traditional definitions of stabilizing and dis-
ruptive selection. In particular, stabilizing
selection was originally proposed as a de-
scription of a population in selective equi-
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librium ( Schmalhausen, 1949; Wadding-
ton, 1957), and the existence of a selective
equilibrium implies a peak in the fitness
surface (e.g., Fig. 1b; Wright, 1969, 1977;
Lande, 1976, 1979).

It is important to realize, however, that
the traditional definitions of stabilizing and
disruptive selection are typological and
qualitative. For example, in some instances,
contraction of variance beyond that caused
by directional selection will be indicative of
stabilizing selection (Fig. 1d), whereas in
other instances it is not (Fig. 1c). Further,
asa population moves toward a fitness peak,
selection changes from purely directional
(Fig. Ic) to a combination of directional and
stabilizing selection (Fig. 1d). The point at
which stabilizing selection begins can only
be defined arbitrarily. This confusion over
the meaning of stabilizing selection has not
been a problem in theoretical work, because
the fitness function is usually defined in-
dependently of the location of the popula-
tion mean. In empirical studies of selection,
however, there is a potential for confusion
between labels attached to selection coeffi-
cients and the traditional modes of selec-
tion. Much of the confusion can be elimi-
nated by recognizing a new, general category
of selection. We propose that nonlinear se-
lection be used to describe selection that
causes a change in the second or higher mo-
ments of the phenotypic distribution be-
yond those caused by directional selection.
Under this system, then, there are two fun-
damental modes of selection: directional
(linear) and nonlinear. In the univariate case,
nonlinear selection can be divided into con-
vex selection (with the fitness function bent
downward) and concave selection (the fit-
ness function bent upward). Stabilizing and
disruptive selection are thus special cases of
convex and concave selection in which an
inflection point on the fitness surface occurs
in the neighborhood of the phenotypic mean
(e.g., within the range of observed pheno-
typic variation). We leave unresolved the
problem of usefully defining the term, “in
the neighborhood of the phenotypic mean”
(see Mitchell-Olds and Shaw, 1987).

Because of the assumption of multivari-
ate normality, which we will use throughout
our discussion, the change in the mean and
variance of the phenotypic distribution can
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be predicted by the linear and quadratic ele-
ments of the fitness function (Lande and
Arnold, 1983). Therefore, in this paper the
only coefficients of nonlinear selection that
we will consider will be coefficients of qua-
dratic selection.

Multivariate Approaches to Selection

A simple bivariate association between
individual fitness and a trait (as in Fig. 1)
iscommonly used in the empirical literature
as a test for directional or stabilizing selec-
tion (reviewed by Endler [1986 Ch. 5]). A
limitation of such univariate measures of
selection is that the association may be due
to common correlation with some other trait
(Pearson, 1903; Robertson, 1956: Wad-
dington, 1957; Falconer, 1981 Ch. 19). For
example, if we are measuring selection on
trait 4 and if another trait (B) is correlated
with 4, selection acting only on B can make
it appear that there is a causal association
between A4 and fitness, even if A4 is itself
selectively neutral. If both traits have been
measured, however, one can attempt to tease
apart the direct and indirect effects of se-
lection by computing partial correlations or
partial regressions. While even the multi-
variate approach is plagued to some degree
by the problem of unmeasured characters,
it has the advantage that it can correct for
characters that are measured (Lande and
Arnold, 1983). Some researchers have used
this multivariate approach with a justifi-
cation rooted only in statistical grounds (e.g.,
McGregor et al., 1981). Lande and Arnold
(1983) showed that a partial-regression ap-
proach to selection also makes sense in terms
of evolutionary theory, because the regres-
sion coefficients are also the selection coef-
ficients that appear in dynamical equations
for phenotypic evolution and that define a
multidimensional surface which describes
the relationship between the traits and fit-
ness.

Selection Coefficients.—In the particular
system of selection coefficients that we will
use, each coefficient has three different
meanings: 1) a dynamic meaning, describ-
ing the change in the trait distribution caused
by selection; 2) a statistical meaning, de-
scribing the relationship between a pheno-
typic trait and fitness; and 3) a geometrical
meaning, describing a surface of individual
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TaBLE 1. A summary of selection coefficients and their meanings.
Selection coefficient Symbol Dynamic interpretation Statistical meaning Geometrical interpretation
Directional selec- S shift in mean due to covariance between rel- —

direct and indirect ef-
fects of directional
selection

tion differential

strength of the direct
force of directional
selection on charac-
ter z;

Directional selec- Bi
tion gradient

change in variance (i =
J) of character z; or
covariance (i * j) be-
tween characters z;
and z; due to the di-
rect and indirect ef-
fects of quadratic se-
lection, independent
of the influence of
directional selection

Quadratic selec- Cij
tion differential

strength of the direct ef-
fects of quadratic se-
lection: when i = j,
v;i indicates whether
convex (negative v)
or concave selection
(positive v) is acting
on trait z;; when | #
J. vij indicates the di-
rect effects of corre-
lational selection

Quadratic selec- Vi
tion gradient

ative fitness and
character

partial regression of
relative fitness on a
character, holding all
other characters con-

direction of steepest
uphill slope from the
population mean on
the selection surface?

stant®

covariance between rel- -
ative fitness and
pairwise products of
character deviations
from the mean

curvature and orientation
of the selection sur-
face?

partial regression of
relative fitness on
pairwise products of
character deviations
from the mean,
holding other charac-
ters constant?

& Assumes multivariate normality of the phenotypic distribution.

Assumes multivariate normality only if coefficients are not estimated separately.

fitness as a function of trait values (Lande
and Arnold, 1983). The coefficients and their
meanings are listed in Table 1. The coeffi-
cients are of two basic types. The selection
differentials most closely resemble the com-
mon-sense measures of selection, for they
represent the changes in mean, variance, and
covariance that are induced by selection.
Thus, for example, the directional selection
differential (shift in mean due to selection)
has been used for many years in numerous
applications in quantitative genetics (Lush,
1945; Falconer, 1981 Ch. 11). Similarly, the
quadratic selection differential measures
changes in trait variance and covariance
caused by selection. The fundamental lim-
itation of selection differentials as measures
of selection is that they reflect the impact
of selection on correlated characters as well
as on the trait in question. Thus, the selec-
tion differentials show the results of both

the direct effects of selection on a given trait
and the indirect effects of selection on cor-
related traits. However, using the fact that
the selection differentials are equivalent to
covariances between fitness and the traits
(Table 1), one can compute multivariate
measures of selection that correct for cor-
relations among the measured traits and,
therefore, only estimate the direct effects of
selection (Lande and Arnold, 1983). These
multivariate selection coefficients are par-
tial regressions of fitness on the traits. They
have been called selection gradients (Table
1).

Because they measure only the direct ef-
fects of selection on a trait, the directional
selection gradients can be used in dynamic
equations to predict the evolution of the
average phenotype in the population. Thus,
if we wish to predict how much the mean
of a set of traits will change from one gen-
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eration to the next due to the deterministic
effects of selection, and if the traits have a
multivariate normal distribution, we can use
the equation

Az = GB (1)

where AZ denotes a column vector of changes
in phenotypic means, G denotes the addi-
tive genetic variance-covariance matrix for
the traits, and 8 is the directional selection
gradient vector (Lande, 1979). The qua-
dratic selection gradients play an analogous
role in a deterministic equation for the
change in the genetic matrix G. Thus, the
change in G due to selection within a gen-
eration (assuming multivariate normality of
the traits) is

AG = G(y — 887G (2

where v is the quadratic selection gradient
matrix and T denotes matrix transposition
(after Lande [1980} and Lande and Arnold
[1983]). How these within-generation
changes in G are transmitted across gener-
ations is somewhat controversial (see Lande,
1980, 1984; Turelli, 1984, 1985).

Fitness Surfaces

Another important meaning of the selec-
tion gradients is that they describe a selec-
tion surface. Three different types of fitness
surfaces are recognized in the evolutionary
literature: the individual selection surface,
the best quadratic approximation to the in-
dividual selection surface, and the adaptive
landscape. Selection gradients describe the
second type of surface and serve as a link
between the other two.

The Individual Selection Surface.—The
individual selection surface represents the
association between the expected fitness of
an individual and its phenotypic value(s) for
various traits (Fig. 1). From an ecological
perspective, the individual selection surface
describes the fitness consequences of phe-
notypes interacting with their environment.
In the absence of frequency-dependent se-
lection, then, the individual selection sur-
face can be thought of as a feature of the
environment that is independent of the dis-
tribution of the phenotypes (Schluter, 1988).
The individual selection surface could be of
a simple, smooth shape (e.g., quadratic), or
it might be highly irregular. The *““true’ sur-
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face is therefore probably best estimated us-
ing techniques that do not make assump-
tions about the functional form of the surface
(see Schluter [1988] for some useful tech-
niques that complement those presented
here). A quadratic approximation of the in-
dividual selection surface is very useful,
however, because it yields estimates of the
selection gradients.

The Best Quadratic Approximation to the
Individual Selection Surface. — As discussed
above, the selection gradients are actually
coefficients of a quadratic regression of fit-
ness on the measured traits. This regression
provides the best quadratic approximation
of the individual selection surface. The gra-
dients can be estimated using standard mul-
tiple-regression techniques, which, after
standardizing the trait means to zero, results
in the equation

w=at 2 Biz; + E %'y,-,-z,-z
i=1 i=

+ 2 2 Y;2iZ; T €
i<d

where w is relative fitness (absolute fitness
divided by mean absolute fitness), a is a
constant, 8, is the directional selection gra-
dient for trait z,, v, is the quadratic selection
gradient for trait z, (indicating concave or
convex selection), v,; is the quadratic selec-
tion gradient for traits z, and z; (indicating
correlational selection), and e s an error term
(after Lande and Arnold {1983 eq. 16]). For
a given phenotypic distribution, however,
many different individual selection surfaces
can yield the same selection gradients, be-
cause the directional and quadratic selec-
tion gradients represent the average slope
and curvature of the individual surface
(Lande and Arnold, 1983). Thus, the selec-
tion gradients can also be expressed as the
weighted partial derivatives

(3

ow(z
5= [ r02® @
z
and
’w(z
y = f ) D az, 5)
z
where 9/0z = (8/9z,, . . . , 9/8z,)" is the

gradient (slope) operator, where
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9%/0z,2 ... 0%*9z,0z,
d°/0z? : " :
0%/0z,0z, ... 8%z,
is the curvature operator, and where inte-
gration is taken over all phenotypes in the
population (cf. Lande and Arnold, 1983 eq.
9 and eq. 14b).

The relationship between the selection
gradients and the individual selection sur-
face can be seen by taking the Taylor ex-
pansion of the individual selection surface
around the mean phenotype in the popu-
lation. Using the univariate case for nota-
tional convenience and assuming normali-
ty, (4) and (5) yield

_[dw(2) o'_zd’w(z)
4 _[ dz * 2 dz?
o* d>w(z)
o } ©)
and
_1d*w(2) a_zd“w(z)
Y7 a2 T2 4
o d®w(z)
T 4 ..Lé (7)

where o2 is the variance of the phenotypic
trait and [d'w(z)/dz]..: is the ith derivative
of the individual selection surface evaluated
at the phenotypic mean. These relationships
show that the slope and curvature of the
individual selection surface at the popula-
tion mean will be the same as 8 and v only
if the actual surface is quadratic, for only
then will the higher order terms in (6) and
(7) be zero. Otherwise, the relationship be-
tween 8 and vy and the individual selection
surface will depend on both the shape of the
surface and the phenotypic distribution, and
therefore, Equation (3) may provide a poor
approximation to the true individual selec-
tion surface.

Finally, it should be noted that, while the
individual selection surface represents the
relationship between an individual and fit-
ness, selection gradients are necessarily at-
tributes of the population under study, since
they are used to describe changes in popu-
lation characteristics [i.e., means and vari-
ances; Table 1; Egs. (1) and (2)]. Hence, only
the average properties of the individual se-
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lection surface are necessary to describe the
evolutionary dynamics of the population,
although the particular form of the individ-
ual selection surface may be of interest for
a functional interpretation of fitness differ-
ences between individuals.

Adaptive Landscapes. —Before continu-
ing, it should be noted that the selection
surfaces discussed above are qualitatively
different from the third type of fitness sur-
face, the adaptive landscape (Wright, 1932,
1977; Simpson, 1953). Wright used a land-
scape in which the vertical dimension was
the mean fitness in the population and the
horizontal dimensions were also population
attributes (gene frequencies). Simpson sug-
gested that this idea might be applicable to
phenotypic characters, and the relationship
was made precise by Lande (1976, 1979).
Such adaptive landscapes have the useful
property that the evolving population will
tend to move uphill on the surface and, if
fitnesses are constant, will eventually equil-
ibrate on a local peak (Lande, 1976, 1979;
Wright, 1977). The selection surface re-
ferred to in this paper is not such an adap-
tive landscape but is, instead, a surface of
individual fitness as a function of individual
phenotypic trait values.

The relationship between the individual
selection surface and the adaptive landscape
can be interpreted, however, using the best
quadratic approximation to the individual
selection surface. The selection gradients, 8
and v, are, respectively, the average slope
and average curvature of the individual se-
lection surface weighted by the phenotype
distribution [Egs. (4) and (5)]. They are re-
lated to the slope and curvature of the adap-
tive landscape evaluated at the multivariate
mean of the trait distribution. In particular,
8 is also the slope of the adaptive landscape
(cf. Lande, 1979 eq. 6), while the curvature
of'the landscape isy — 887 if the phenotypic
trait distribution is multivariate normal
[Lande, pers. comm.; note its role in Eq.
(2)]. Thus, when directional selection is ab-
sent (8 = 0), the adaptive landscape and the
best quadratic fit to the individual selection
surface [Eq. (3)] have the same curvature at
the optimum (e.g., Fig. 2a). When there is
directional selection, however, the curva-
ture of the adaptive landscape at the pop-
ulation mean is always more negative (i.e.,



VISUALIZING MULTIVARIATE SELECTION

w(z)

z z

FiG.2. Correspondence between the adaptive land-
scape, the actual individual selection surface, and the
fitted quadratic selection surface. The top two graphs
show the adaptive landscape i.¢., the natural logarithm
of mean absolute fitness as a function of mean phe-
notype; the bottom two graphs show the individual
selection surface (solid curves), i.e., individual relative
fitness as a function of phenotype. The fitted selection
surface (dashed curves in the bottom graphs) is the best
quadratic approximation of the individual selection
surface. The phenotypic trait distribution is shown as
a bell-shaped curve. The vertical dashed line shows the
selective optimum. The graphs were generated assum-
ing a Gaussian individual fitness surface and a normal
phenotypic distribution with standard deviation one
tenth the width of the fitness surface. a) Nonlinear
(stabilizing) selection but no directional selection; note
that the curvatures of the adaptive landscape and the
fitted surface are the same. b) Nonlinear and directional
selection; note that, at the mean, the curvature of the
adaptive landscape is greater than that of the fitted
surface.

more curved when convex selection is op-
erating) than the average curvature of the
individual selection surface at that point
(e.g., Fig. 2b).

FiG. 3.
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Interpreting the Selection Gradients.—
Given a surface described by (3), the coef-
ficients from the quadratic regression de-
scribe the slope, curvature, and orientation
of the selection surface (Table 1). The vector
of directional selection gradients (8) indi-
cates the direction of steepest uphill slope
on the surface from the population mean (z
= 0). The sign of 8, describes whether trait
z; 1s under positive or negative directional
selection, while its magnitude describes the
strength of that selection. Thus, a selection
surface that is described only by directional
selection gradients will be a tilted plane, as
1s depicted in Figure 3a, b for selection on
two traits.

Despite the ease of their calculation, in-
terpretation of the quadratic selection gra-
dients turns out to be somewhat more com-
plex than that of the directional selection
gradients. The diagonal elements of the qua-
dratic selection gradient matrix (y;) de-
scribe the curvature of the surface along the
individual trait axes (z,). A negative value
for v,; means that the fitness surface is curved
downward (convex selection; e.g., Fig. 1b—
d), while a positive value of v, indicates that
the surface is curved upward (concave se-
lection). However, selection can also act on
combinations of traits (correlational selec-
tion). The pattern of correlational selection

Fitness

Selection acting on two phenotypic traits: z, and z,. The two upper figures are three-dimensional

representations of an individual fitness surface, while the lower figures show equal-height contour plots of the
same surfaces. a) Positive directional selection on both traits. Directional selection gradients (8, and 8,) indicate
the slope of the surface; « is a constant of elevation (after Box and Draper, 1987 fig. 2.1). b) The effect of bivariate
directional selection on the distribution of a population. Stippled ellipses show the population distribution before
(light stippling) and after (dark stippling) selection within one generation. Outlines of the ellipse can be thought
of as the 95% confidence intervals of the phenotypic distribution. ¢} Bivariate convex selection with positive
correlational selection. Surface represents v,, < v,, < 0 < v,;, and v,,? < v,,7,: (see text for an explanation of
symbols). d) The effect of convex selection on a population distribution.
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FiG. 4. Hypothetical individual selection surfaces
for two phenotypic traits (+ = peak; — = depression).
Here, 8, and 8, are the directional selection gradients;
Y11» Y22, and v,, are the quadratic selection gradients;
and A, and X, are the canonical coefficients of the system
(eigenvalues of the ¥ matrix). Dotted lines represent
the canonical (principal) axes of the system. For all
surfaces, except where otherwise indicated, 8, = 0.22,
f, = —0.08, v,, = —0.31, v,, = —0.18. a) Selection
surface with a peak (y,, = 0.07, A\, = —0.15, A\, =
—0.34); b) selection surface with a saddle (y,, = 0.77,
A, =0.53, ), = —1.01); ¢) selection surface with a ridge
B, =0,8,=0,v,=023, A =0, ), = —048); d)
selection surface with a rising ridge (8, = 0.84, v,, =
0.23, A, =0, A, = —0.48.

on traits z;and z;is revealed in ;.. A positive
value for v, indicates that traits z, and z; are
being selected to become positively corre-
lated; the opposite is true for a negative val-
ue. If correlational selection on a set of traits
is absent or weak, then the univariate in-
terpretation of the individual vy, values ap-
plies to the multivariate surface as a whole.
For instance, with two traits, if both vy, and
7v,, are negative and v, is small, the fitness
surface will be a hill (Fig. 3c, d). In general,
however, when more than one trait is in-
volved, nonzero values of v,; complicate the
interpretation of the multivariate surface
implied by the 8 and v matrices. For ex-
ample, all of the surfaces drawn in Figure 4
possess similar selection coefficients, yet the
surfaces are quite different. In particular, in
Figure 4b both v,, and 7¥,, are negative,
leading one naively to expect the surface to
be a peak when it is in fact a saddle. Similar
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difficulties are illustrated in Figure 4c, d. It
should be noted that Figure 4a—c all share
the same coefficients except for differences
in the magnitude of v,, (Fig. 4d is a special
case of Fig. 4c and will be discussed below).

Quadratic Surfaces.—In a given dimen-
sional space, the number of distinct types
of quadratic surfaces is finite. For instance,
in three dimensions (i.e., measuring selec-
tion on two traits) the possible surfaces are
illustrated in Figure 4: a peak or valley, a
saddle, a ridge, and a rising ridge. Quadratic
surfaces also have the property that they are
symmetrical about a particular set of axes
called the major axes (Fig. 4). For a surface
constructed by an analysis of selection on n
characters, there will be n major axes of the
surface. The symmetry of this system sug-
gests a solution to the problem illustrated
in Figure 4. If the surface could be inter-
preted in terms of the major axes, then there
would be no confusion as to the form of
curvature along a given axis. This interpre-
tation can be achieved by a relatively simple
transformation which rotates the original
axes to the major axes, thereby removing
the influence of the v, coefficients.

Canonical Analysis

The problem of interpreting and visual-
izing quadratic selection surfaces is a subset
ofthe statistical issues involved in response-
surface analysis (Box and Draper, 1987). Box
and his coworkers have developed many
techniques for analyzing surfaces approxi-
mated by quadratic regression (i.e., re-
sponse surfaces; Box and Wilson, 1951; Box
1954; Box and Youle, 1955; Box and Drap-
er, 1987; see Mead and Pike [1975] for some
current uses and historical background).
Central to this methodology is canonical
analysis, which is a method of rewriting a
fitted second-degree equation in a form that
can be more readily interpreted (Box and
Draper, 1987 p. 332). This new interpre-
tation is achieved by a translation and ro-
tation of the coordinates of the multidi-
mensional space so that the new axes are
aligned with the major axes of the fitted
surface.

It should be noted that the canonical anal-
ysis described here is not the same as ca-
nonical-correlation or canonical-variate
analysis, although they share similar statis-
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tical techniques, and are sometimes called
by this name. Canonical analysis, as we use
it, is a set of general methods for charac-
terizing matrices, of which the methods used
in principal-components analysis are a sub-
set.

To proceed with the analysis, note that
Equation (3) can be rewritten in matrix form
(without the error term) as

w=a+ 8"z + 27z

®)

where, as before, all traits have been stan-
dardized to zero means. Information about
the curvature and orientation of the surface
1s contained in the 4 matrix. In order to
obtain the necessary rotation of axes, note
that v = MAMT, where M is an orthogonal
matrix whose columns are the eigenvectors
of v normalized to unit length, and A is a
matrix with the eigenvalues of ¥ on its di-
agonal and zeros everywhere else. From the
preceding relationships, it can be seen that
the transformation

A =M"yM )]
results in a new matrix of multivariate cur-
vature (A) in which all off-diagonal elements
are zero. Now, writing y = Mz and 6 =
MT8, (8) can be rewritten as

w=a + Ty + 3yTAy, (10a)

or, in long form, as

w=a+0y +...+0y, +3Ap:+...
+ A (10b)

Equation (10) is the ““A canonical form™ of
Box and Draper (1987 p. 333). We will call
the diagonal elements of A (A, = the eigen-
values of ) the canonical coefficients of the
system.

A great deal of information can be ob-
tained from Equation (10). The signs of the
A; determine the type of fitted second-order
surface, and their magnitudes describe the
curvature of the surface. The 6, measure the
slope of the surface from the original origin
(z = 0) along the rotated axes indicated by
the transformed variables, y,. Before a pre-
cise interpretation of the A, can be explained,
however, one further transformation is
needed.

Because Equation (8) represents a surface,
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the stationary point, z, (a minimum, max-
imum, or saddle point) on that surface can
be found by setting its derivative to zero,
which results in

z,=—7'8. (11)
By substituting (11) into (8), the fitness val-
ue at the stationary point can be found, and
this is given by

WO = o + %ﬂTZO.

(12)

The system is then put in “B canonical form™
(Box and Draper, 1987 p. 337) by shifting
the origin to the stationary point and ro-
tating the axes as above by the transfor-
mation, y = M%(z — z,). Under this trans-
formation and using the decomposition of
v given above, (8) can be rewritten as

w=w, + 3yTAy (13a)
or
w=w, + A2+ Ay + ..
+ Ay.2). (13b)

Except for the linear terms, the interpre-
tation of the transformation in form A [Eq.
(10)] and form B [Eq. (13)] is the same. Here,
the important factors are the sign and mag-
nitude of the canonical coefficients, A,. In
general, if all the A; are negative, then z; is
a point of maximum fitness (such as in Fig.
4a), indicating that convex selection is op-
erating on all traits and trait combinations.
Similarly, if all the A, are positive then z, is
a minimum-fitness point, with concave se-
lection acting on the character distribution.
If the signs of the A, are different, however,
then z, is an unstable equilibrium, and the
fitness surface will look like a saddle (Fig.
4b). The larger the magnitude of the canon-
ical coefficients (| A,|), the more curved the
surface will be in that dimension. Therefore,
if some of the A, are nearly zero, there will
not be much curvature in the surface along
the axes associated with these values. Such
a situation means that there is a ridge of
almost constant fitness along one axis (or
set of axes; e.g., Fig. 4c). An eigenvalue of
zero indicates that the v matrix is singular
and, therefore, that Equation (11) for cal-
culating the stationary point cannot be com-
puted. Canonical form A should always be
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used to characterize such a system. This is
especially important when directional se-
lection is strong relative to quadratic selec-
tion and one or more of the eigenvalues is
zero. In this case, a rising ridge will result
(e.g., Fig. 4d), with the slope of the ridge
equal to 8,, where A\, = 0 [Eq. (10)]. In gen-
eral, form A should be used whenever the
stationary point is beyond the distribution
of observed phenotypes, because a trans-
lation of the origin to a stationary point in
unmeasured space may lead to erroneous
interpretations of the fitted surface. Form B
can be used when the stationary point is
within the phenotypic range and when one
wants the relationship between the popu-
lation mean and the stationary point to be
emphasized (e.g., under stabilizing or dis-
ruptive selection).

A problem with this technique, as with
all transformations, is that the transformed
variables must be interpreted in terms of
the original variables. However, in this case,
the transformation is orthogonal, and the
relationship between the original variables
and the transformed variables is contained
in the eigenvector matrix, M. Hence, each
column in M contains the loadings of orig-
inal variables on the transformed axes. These
loadings indicate the linear combination of
traits in the original space (z) that create the
new traits in the canonical space (y) and can
therefore be interpreted as in principal-
components analysis.

Selection on Two Traits.—When mea-
suring selection on only two traits, some
simple rules relating the above results di-
rectly to the 4 matrix can be formulated. In
this two-dimensional case, performing the
canonical analysis is simplified, because
solving for the eigenvalues of ¥ only neces-
sitates using the quadratic equation. This
allows one to find an explicit relationship
between the diagonal and off-diagonal terms
in 4. In particular, if v,, and v,, have the
same sign, then it can be shown that the
relationships v,2> < ¥11722, Y12 = Y122
and v,,%2 > v,,72, result in the surface being
a peak (if both diagonal elements are neg-
ative; a valley if both are positive), a ridge,
and a saddle, respectively. If the signs of v,
and v,, are different, however, the surface
will always be a saddle. Thus, variation in
the value of v,,% around the point vy,,2 =
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711722 €an lead to qualitatively different types
of surfaces (e.g., Fig. 4). Analogous results
are given in Kimura (1956) and Wright
(1969 pp. 41-42) for multidimensional
adaptive landscapes.

Statistical Issues. — We do not wish to ad-
dress the statistical problems associated with
estimating selection gradients in natural
populations per se, as many aspects of this
subject have been covered elsewhere (Lande
and Arnold, 1983; Mitchell-Olds and Shaw,
1987). Canonical analysis is simply a post
hoc, orthogonal transformation of the orig-
inal variables and, as such, introduces no
statistical error through the transformation
itself. Therefore, if the selection gradients
have been poorly estimated, canonical anal-
ysis will not improve their accuracy. Errors
can be assigned to the canonical coefficients
of the estimated selection gradients, how-
ever. In general, if the phenotypic distri-
bution is fairly uniform across all characters
(i.e., if there is little correlation between
characters), then the axes of the surface are
freely rotatable, and the errors of the ca-
nonical coeflicients (A,) will be on the same
order as the quadratic selection gradients
(v.;) (Box and Draper, 1987 p. 354). Such a
distribution is unlikely to be obtained in real
populations, however, so the errors of the
canonical coefficients will need to be cal-
culated. Unfortunately, because of the dif-
ficulties of assigning errors to eigenvalues,
no direct transformation of the errors in vy
to those in A is known. The errors can be
readily calculated, however, by simply
transforming the variables to the canonical
space before analysis and then calculating
the regression specified in Equations (10) or
(13) (E. Simms, unpubl.). The regression
coeflicients estimated by this procedure will
be the canonical coefficients, and their errors
can be calculated in the same way that one
would calculate an error for any regression
coefficient (this procedure is analogous to
using principal components as the variables
in a regression; Draper and Smith, 1981).

Solutions for the confidence region of the
stationary point [Eq. (11)] are given by Box
and Hunter (1954; see also Stablein et al.
[1983]). We do not see the prediction of
selective optima as the primary use of this
method, however. In particular, if the sta-
tionary point is beyond the area of observed
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phenotypes, great care should be taken be-
fore any conclusions are drawn about the
set of “optimal” characters in relation to
the observed character composition of the
population. Any deviations from the qua-
dratic fit will become amplified as the dis-
tance of the calculated optimum from the
population mean increases, and therefore,
the calculated optimum may be quite far
from the actual optimum in this case. If the
calculated optimum is within the range of
phenotypic expression, however, the con-
fidence region of the stationary point will
need to be considered if, for example, the
traditional definitions of stabilizing and dis-
ruptive selection are to be used (see also
Mitchell-Olds and Shaw [1987]).

Despite being a simple transformation,
canonical analysis does reveal a cautionary
note on the interpretation of the selection
coefficients. If the errors of the quadratic
selection gradients are large (especially those
of v,), qualitatively different surfaces may
provide a statistically adequate fit to the al-
lowable range of coefficients, and it will be
impossible to ascribe a single surface to the
coefficients. Therefore, simply bounding the
v,; away from zero does not necessarily im-
ply that the population is experiencing
multivariate convex selection (even if ca-
nonical analysis confirms this result); one
must also simultaneously consider the range
of the v,,.

A further difficulty in the interpretation
of the selection coefficients can be encoun-
tered if the phenotypic distribution of traits
being measured is not multivariate normal.
In this case, there can be covariance be-
tween the linear and quadratic terms used
in the quadratic regression, which can lead
to incorrect estimates of 8 and v. The cor-
rect estimates can be obtained, however, by
using a two-step process in which 8 is es-
timated by using a purely linear regression,
and v is estimated using the full quadratic
regression (Lande and Amold, 1983 p.
1218). Having two estimates of 8 can lead
to a dilemma when one wants to visualize
the selection surface, however. The full
regression gives the best quadratic fit to the
surface but yields incorrect estimates of 8.
One is then left with the choice of using the
coefficients of the full regression or the cor-
rect selection coefficients when reconstruct-
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ing the surface. The set of coefficients cho-
sen depends on whether one wants to
visualize the best approximation to the sur-
face or the selection coefficients themselves.
We argue for the latter (see Fitness Surfaces
above).

Finally, it should be noted that the SAS
statistical package (SAS Institute, 1985)
contains a regression procedure (RSREG)
that will perform many of the procedures
described above. Because of the current rar-
ity of multivariate data sets of sufficient size
to yield reasonable estimates of quadratic
selection coefficients, we do not present a
detailed example of how to perform a ca-
nonical analysis. E. Simms (unpubl.), how-
ever, provides an application of the canon-
ical analysis of a selection surface using data
on plant resistance to multiple herbivores.

Rationale for Multivariate Studies of
Nonlinear Selection

Selection studies often analyze direction-
al selection and ignore nonlinear selection.
This practice is particularly unfortunate in
cases where lifetime fitness has been mea-
sured (e.g., Clutton-Brock, 1988). In such
cases, if the population is in evolutionary
equilibrium, there is no directional selec-
tion on heritable characters (8 = 0), and
information about selection pressures will
reside instead in the coefficients of quadratic
selection. Even in nonequilibrium popula-
tions or when only components of fitness
have been measured, coefficients of qua-
dratic selection can provide a great deal of
information. Quadratic coefficients can
identify nonlinear relationships between
traits and fitness (e.g., intermediate optima)
and can show that selection has acted on
functionally coupled traits. For instance,
Arnold and Bennett (1988) used correla-
tional selection analysis to suggest that char-
acteristic combinations of body and tail ver-
tebral numbers promoted crawling speed in
garter snakes. The optimum number of tail
vertebrae varied with the number of body
vertebrae within a single population. This
type of functional analysis can be further
supplemented by canonical analysis of the
selection or performance surface. The pat-
tern of multivariate correlational selection
is revealed in the transformation matrix, M,
with traits experiencing correlational selec-
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tion with respect to one another loading
positively on the same principal axis (Fig.
4). The patterns thus revealed can then be
used to generate hypotheses which could be
tested on functional or other grounds (see
also Arnold [1983]). Finally, quadratic se-
lection gradients are of interest because of
their role in the dynamical equations for the
evolution of genetic variances and covari-
ance [Eq. (2); Lande, 1980, 1984].

Visualizing Selection

We have pointed out that a series of uni-
variate or even bivariate pictures may give
a misleading representation of selection.
Given this circumstance, one could settle
for a complete set of selection coefficients
that describe multivariate selection, or one
could go further and attempt to visualize
the selection surface implied by the coeffi-
cients. There are several reasons for taking
this additional step. First, visualization can
provide a compact summary of multivari-
ate selection. Five coefficients are needed to
describe selection on two traits, nine coef-
ficients are needed for three traits, and 14
coefficients are needed for four traits. In
contrast to the difficulty of digesting such
series of coeflicients, we can represent se-
lection on two traits as a two-dimensional
surface (e.g., Fig. 4), selection on three traits
as a nested series of three dimensional solids
(see below), and selection on four traits by
animating the three-trait representation. All
of these graphical techniques are now prac-
tical on personal computers. Second, visu-
alization may be useful in comparative
studies of selection. For example, the geo-
metric similarity of selection surfaces may
not be readily apparent from inspection of
selection coefficients alone. Third, visual-
ization may also be useful in planning
experimental work. Using the selection sur-
face, one can easily predict how manipu-
lations of trait combinations will affect fit-
ness or its components (Box and Draper,
1987).

Given that one wants to visualize selec-
tion, there are still some difficulties to over-
come. If selection is only being measured
on two traits, one could simply use Equation
(3) to regenerate the fitted surface (using a
contour-plotting program, for example). If
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more than two traits are involved, however,
correlational selection may complicate the
interpretation of the surface. Simply draw-
ing surfaces for pairs of traits will be mis-
leading if there is strong correlational selec-
tion between the traits being drawn and those
that are not. In addition to the problem of
simply drawing the surface, any interpre-
tation of the selection gradients could be
incorrect if correlational selection is acting.
Several approaches to this difficulty become
clear when the problem is viewed in light
of canonical analysis.

Because the canonical coefficients pro-
vide an orthogonal description of the sur-
face, any drawing of a pairwise combination
of transformed variables will yield a correct
representation of that aspect of the multi-
dimensional surface. However, the canon-
ical space will almost never be the same as
the original character space, and surfaces in
the original space may be desired (e.g., for
functional interpretation). This problem is
alleviated somewhat if canonical analysis
indicates that one of the canonical axes is
essentially parallel to that of a particular
trait. This trait can then be safely drawn in
its original space with little chance of mis-
representation. In addition, traits may clus-
ter into groups that experience similar pat-
terns of correlational selection. If selection
on such groups of traits is independent of
selection on other traits (as indicated by the
loading patterns from canonical analysis),
then these groups can be drawn together in
the original space. For a group consisting of
three traits, this can be accomplished by
drawing multiple two-dimensional sections
of the surface with the third trait varying
across graphs or by drawing all three traits
simultaneously as a three-dimensional con-
tour drawing of a four-dimensional surface
(Fig. 5).

As with selection on two traits, the num-
ber of possible quadratic fitness surfaces that
result from selection on three traits is lim-
ited. The possibilities are shown in Figure
5. In each graph the point of maximum fit-
ness is at the origin (except Fig. 5g, h, in
which there are no fixed maxima), and the
contours of the surface enclose this maxi-
mum like the layers of an onion enclose its
center (Box and Draper, 1987 p. 330). Sur-
faces created by four or more traits cannot



VISUALIZING MULTIVARIATE SELECTION

1221

Fic. 5. Individual selection surfaces for selection on three traits (after Box and Draper [1987 fig. 11.3]).
Figures are contour representations of a four-dimensional selection surface, fitness being the fourth axis. All
points on the surface of a solid have the same fitness. Surfaces are represented in their canonical spaces. The
point of maximum fitness is at the origin in b and c. There is a line of maximum fitness in d and f, and a plane
of maximum fitness in e. a) Axis labels; b) convex selection on all three traits A, Az Ay) = (—,—,—); ) convex

selection on traits y, and y,, concave selection on ys (—

,—,+); d) convex selection on y,, concave selection on

Y3, no selection on y, (~,0,+) (compare with Fig. 4b); e) convex selection on 1, no selection on y, or y, (—,0,0)
(compare with Fig. 4c); f) convex selection on y, and y,, no selection on ¥3 (—,—,0) (compare with Fig. 4a); g)
convex selection on y, and y,, strong directional selection on y, (6; > 0; therefore the center of the system is
undefined, i.e., it is a rising ridge) (—,—,0); h) convex selection on y,, no selection on ¥, strong directional

selection on y;, (—,0,0) (compare with Fig. 4d).

be explicitly visualized, but apart from ac-
tually drawing the surfaces, canonical anal-
ysis allows one to characterize the entire
multidimensional surface by inspection of
the canonical coeflicients and the transfor-
mation matrix. For studies involving many
traits, combinations of the above tech-
niques should help to elucidate the form of
selection that is operating.
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