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Abstract.-The comparison of additive genetic variance-covariance matrices (G-matrices) is an increasingly popular
exercise in evolutionary biology because the evolution of the G-matrix is central to the issue of persistence of genetic
constraints and to the use of dynamic models in an evolutionary time frame. The comparison of G-matrices is a
nontrivial statistical problem because family structure induces nonindependence among the elements in each matrix.
Past solutions to the problem of G-matrix comparison have dealt with this problem, with varying success, but have
tested a single null hypothesis (matrix equality or matrix dissimilarity). Because matrices can differ in many ways,
several hypotheses are of interest in matrix comparisons. Flury (1988) has provided an approach to matrix comparison
in which a variety of hypotheses are tested, including the two extreme hypotheses prevalent in the evolutionary
literature. The hypotheses are arranged in a hierarchy and involve comparisons of both the principal components
(eigenvectors) and eigenvalues of the matrix. We adapt Flury's hierarchy of tests to the problem of comparing G
matrices by using randomization testing to account for nonindependence induced by family structure. Software has
been developed for carrying out this analysis for both genetic and phenotypic data. The method is illustrated with a
garter snake test case.
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Evolution is an inherently multivariate phenomenon in
which the functional and genetic interplay between traits can
have a large impact on the both the direction and outcome
of evolution (Lande 1988). The relationship between traits
is often summarized statistically in the form of a variance
covariance matrix in which the variation for each individual
trait is found on the main diagonal and the pattern of co
variation among traits is described by the off-diagonal terms.
Here, we will focus on the pattern of among-trait covariance
from a quantitative genetic point of view, asking specifically
to what extent the evolutionary process leads to changes in
covariance pattern. This question can be addressed directly
by the comparison of quantitative genetic variance-covari
ance matrices from descendant populations.

Comparison of genetic variance-covariance matrices (G
matrices; Lande 1979) is a nontrivial statistical problem and
a variety of methods have been proposed as a solution (for
a summary, see Roff 1997, p. lO1ff). The two leading meth
ods are matrix correlation (which tests the null model of no
correlation between two matrices; e.g., Lofsvold 1986; Kohn
and Atchley 1988) and maximum-likelihood tests for matrix
equality (e.g., Shaw 1991). In this paper we develop and
apply a third methodology that has some distinct advantages
over previous methods. This new methodology is based on
Flury's (1988) model of common principal components,
which is built on the observation that matrices can be de
scribed and compared by their eigenvalues and eigenvectors
(principal components). Unlike other methods, Flury's model
provides a hierarchy of tests corresponding to a range of
possible relationships among matrices (Fig. 1). This hierarchy
provides tests of several other hypotheses besides matrix
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equality (e.g., matrix proportionality, common principal com
ponents). To apply Flury's method to the case of G-matrices,
we have to account for the nonindependence in the data in
duced by family structure. We introduce randomization test
ing as a solution to this problem.

Building the Hierarchy

The purpose of the analysis presented here is to compare
the structure of two or more covariance matrices in a hier
archical fashion. The hierarchy of comparisons is built upon
the realization that covariance matrices can share more com
plex relationships between one another than just being equal
or unequal (Flury 1988). For example, one matrix might be
identical to another except that each element of the matrix
is multiplied by a single constant. We would then say that
the matrices are proportional. A more precise definition of
proportionality is that the matrices share identical eigenvec
tors (or principal components), but their eigenvalues differ
by a proportional constant. This suggests that another rela
tionship between matrices could be that they share principal
components in common, but their eigenvalues differ (the
common principal component, or CPC, model). In this case,
each of the elements of the eigenvectors for each matrix are
identical. Similarly, the matrices could share one, two, or up
to P - 2 (where the matrices have dimensionp X p) principal
components in common out of the p total possible compo
nents. This is the partial principal components (PCPC) model.
The PCPC model stops at p - 2 components because, as
principal components are defined to be orthogonal to one
another, if p - 1 of the components are known then the final
one is already determined, yielding the full CPC model. The
hierarchical nature of this set of comparisons can be appre
ciated by realizing that if two matrices share two principal
components in common, then they necessarily share one com-
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FIG. 2. A comparison of the different approaches to locating a set
of matrices on the Flury hierarchy. This example assumes 6 X 6
matrices. In the step-up approach, each level of the hierarchy is
evaluated in turn and the next step up is predicated on the previous
lower step, which is used as the current null hypothesis. In the
jump-up approach, each level of the hierarchy is tested against the
lowest level (unrelated structure), yielding a single test for the ap
propriate level. This approach is based on the fact that for the current
level of the hierarchy to be valid (e.g., CPe), all the lower levels
of the hierarchy must also be true (e.g., CPC[4] and below). The
step-up approach has the advantage that it shows the entire decom
position of the model (Flury 1988), whereas the jump-up approach
has the advantage that it is simpler to interpret and ultimately in
volves reporting a single statistical test.

METHODS

Finding One's Place in the Hierarchy

Comparison Statistic.-The first step in comparing two or
more matrices is creating a metric or statistic by which the
comparison can be evaluated. A solution based on maximum
likelihood methods has been known for some time for the
case of matrix equality (Anderson 1958). Basically, in this
case each separate matrix is compared to the average of all
of the matrices. The more different each matrix is from the
average, the less likely it is that the matrices are equal to one
another (the exact value of this likelihood depends on the
underlying distribution of the traits-usually assumed to be
multivariate normal). Flury (1987, 1988) greatly expanded
on this approach by adding other levels of similarity to the
comparisons (Fig. 1), although the overall approach remains
the same. For each hypothesis in the hierarchy, a new set of
matrices (based on the sample matrices) is constructed that
are constrained so that the hypothesis in question is true. The
relative degree of difference between the sample and con
strained matrices determines the likelihood that that partic
ular hypothesis is true. Because there are a number of dif
ferent hypotheses in the hierarchy, the relative likelihood of
any given hypothesis must be evaluated against the other
hypotheses in the hierarchy. It is important to note that this
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ponent. Similarly, if two matrices are proportional, then they
must satisfy the CPC model as well as all of the PCPC mod
els. The hierarchy ends with matrix equality, which can only
be true if all other elements of the hierarchy also hold (Figs.
1, 2).

Viewing the evolution of G-matrices within the context of
the Flury hierarchy greatly expands the set of evolutionary
questions that can be addressed in matrix-comparison studies.
For example, most previous studies of G-matrix evolution
have focused on whether the G-matrices are unchanged
(equal) through time (e.g., Lofsvold 1986; Shaw 1991). Al
though this question is of central importance to the issue of
reconstructing historical patterns of selection (Lande 1979;
Arnold 1988; Lofsvold 1988; Turelli 1988), the evolution of
G can be interesting in its own right. The structure of G can
have an important influence on the direction of evolutionary
change (Lande 1979; Felsenstein 1988; Zeng 1988; Schluter
1996) and may reflect the underlying pattern of develop
mental interactions and associations (Cheverud 1984; May
nard Smith et al. 1985). Here, we present tools that allow
this underlying structure to be investigated. We will first pro
vide the statistical context for evaluating the Flury hierarchy
for quantitative genetic data and then demonstrate its appli
cation using a worked example. A companion paper (Arnold
and Phillips 1999) uses these methods to more fully inves
tigate G-matrix evolution within two populations of the garter
snake, Thamnophis elegans.

FIG. 1. Diagramatic representation of the Flury hierarchy. The
diagram shows the hierarchy of comparisons possible for two co
variance matrices, each with two characters. The covariance struc
ture of the data is represented by ellipses with axis orientation
representing principal components and with size along each axis
representing the eigenvalues. The covariance pattern in the middle
is compared to four possible similarity classes (double-headed ar
rows). The hierarchy of comparisons moves from unrelated struc
ture up through equality (single-headed arrows).
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process does not consist of separately calculating the eigen
values and eigenvectors and then comparing them in some
way. Instead, the eigenstructure of the matrices is estimated
simultaneously under the constrained hypothesis (Flury
1988).

Step-up Approach.-The various models in the hierarchy
can be tested in several ways. First, and perhaps most log
ically, the hierarchy can be built in a stepwise fashion starting
with no relation between the matrices (unrelated structure).
From this one can go to CPC(1), then to CPC(2), etc., through
CPC, proportionality, and equality (Figs. 1,2). The likelihood
that a particular model is valid is then tested against the next
lowest model in the hierarchy (Fig. 2), the next step being
taken if the current test in the hierarchy is nonsignificant.
Flury (1988) has shown that this approach leads to a decom
position of the log-likelihood ratio used to test each step of
the hierarchy, although it is currently unknown if the tests
in this decomposition are completely independent of one an
other (Flury 1988, p. 151), because sums of chi-squares that
are known to be stochastically dependent sometimes appear
to be independent (Flury 1986).

We call this method the "step-up approach." This is the
statistical-testing framework outlined in detail by Flury
(1988). A difficulty with this approach is that if the lower
model is not the correct model, then the significance tests
involving this model will not have any real meaning (Flury
1988). This can sometimes make interpretation of where in
the hierarchy the matrices belong difficult, because one is
forced to decide whether a marginally nonsignificant test
means that one should move up in the hierarchy. The fol
lowing approach simplifies interpretation, but loses the ele
gance of the decomposition provided by the step-up ap
proach.

Jump-up Approach.-An alternative testing procedure is
that any model hypothesis can be tested against any other
model that is lower in the hierarchy than the first hypothesis.
For example, equality could also be tested against CPC (skip
ping proportionality) or directly against unrelated structure
for a more traditional "equa1-or-not" type test (this latter test
is in fact equivalent to the standard test of matrix equality
discussed above). The test of each level of the hierarchy
against unrelated structure is probably the most logical from
a hypothesis-testing point of view, which is how most bi
ologists will probably approach these problems. Because each
level of the hierarchy is inclusive of the lower levels, one
can start at the bottom of the hierarchy and test each suc
cessive level against the hypothesis of unrelated structure
until a significant deviation is encountered (Fig. 2). The move
up the hierarchy should be stopped at this point. The statistic
for the jump-up level is simply the sum of the likelihoods
(x2-values) and degrees of freedom for the underlying steps.
We call this method the "jump-up approach" because one
jumps all the way from the bottom of the hierarchy to the
model in question. One caveat to this approach is that the
significance tests at each level are not independent, because
the tests are not orthogonal. However, if the tests are build
from the bottom up with a strong stopping rule (i.e., not going
above the first significant difference rather than simply look
ing for highest level in the model with a nonsignificant P
value), then this nonindependence should not be too prob-

lematic, because it is the P-values at higher levels of the
hierarchy that are dependent on those below.

Model-Building Approach.-A final approach is the one
advocated by Flury (1988), in which the overall best-fitting
model is taken. In this "model-building approach," the
choice criterion is not statistical significance, but rather is
how well a particular hierarchical model fits based on how
much information is available to fit that model. Flury (1988,
p. 151) suggests that the Akaike information criterion (AIC;
Akaike 1973) can be used for this decision-making. The AIC
balances the goodness of fit of a particular model (the log
likelihood statistic in this case) against the number of pa
rameters used to fit the model. Models with more parameters
tend to fit better out of necessity, so the best model in this
scheme is chosen using a "penalized log likelihood," which
is a simple difference between the likelihood and the number
of parameters (Flury 1988, p. 152). The AIC is akin to the
reciprocal of this function, so that the minimum AIC value
represents the best fitting model.

Although Flury (1988) recommends this method over other
possibilities, there are two difficulties in applying the AIC
to quantitative genetic matrices. First, there is no statistical
testing in this method, so it is impossible to address the
question of whether one model fits the data significantly bet
ter than another model. Second, proper calculation of the AIC
is dependent on the number of parameters in a model (i.e.,
a combination of sample size, matrix dimension, and the
number of populations being compared), which cannot be
precisely estimated in quantitative genetic designs. Estimat
ing the appropriate value for the number of parameters is
difficult in quantitative genetics experiments because the ac
curacy of the covariance components that are used to estimate
the genetic variance-covariance matrices depend in a complex
way on both the number of families and the numbers of
individuals per family. None of these values can be substi
tuted into the parametric version of the Flury hierarchy to
yield sensible results (see below).

Choosing an Approach.-The correct approach to use in
building the hierarchy is currently unclear and it is likely
that there will be no single best approach for every situation.
All three approaches usually yield the same qualitative an
swer, but not always (as we shall see, they can sometimes
be several steps away from one another on the hierarchy).
Often the biological "reality" of the situation can be gleaned
by looking at how well the matrices constructed using the
constrained model match the actual matrices from the pop
ulations. The model-building approach will serve best when
the primary goal is parameter estimation, whereas the step
up approach highlights which point in the hierarchy causes
the overall greatest effect. The jump-up approach is most
applicable when a test of a single hypothesis is desired. We
tend to rely on the jump-up approach because it provides the
most straightforward way of understanding and interpreting
the results.

Other Hierarchies.-Flury also presents a slightly alter
native hierarchy called the common space model in which
the focus is on a shared spherical subspace among some of
the components. Although this is an important question in
many aspects of multivariate statistics (e.g., in repeated mea
sures analysis; Winer et al. 1991), it probably is not generally
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applicable to quantitative genetic variation, and so is ignored
here (see also Krzanowski 1979).

Statistical Tests

Randomization Test.-The problem with testing quantita
tive genetic data using this hierarchy is that the significance
tests constructed by Flury (1988) rely on the likelihood sta
tistic to be chi-square distributed, which in turn requires both
multivariate normality and that the degrees of freedom under
the null hypothesis is known. The former can be a problem
for any data, but it is especially problematic for genetic data
where we usually have little information about the distri
bution of breeding values. The latter problem is uniquely
severe in variance component estimation procedures because
it is not clear what the appropriate degrees of freedom for
the comparison should be. For additive genetic variances and
covariances, the appropriate number of degrees of freedom
is related to the number of families or sires in the breeding
design. However, the number of individuals per family also
contributes to the error structure of the covariance estimates.
In practice, the distributions do appear to be chi-square dis
tributed, but with the inappropriate degrees of freedom (see
below).

One solution to these problems is to use a statistical re
sampling approach. We have devised a randomization pro
cedure in which families are randomly reassigned to popu
lations before the comparisons are made (Phillips 1998a; see
also Roff 1997, p. 106). The randomized populations satisfy
the null hypothesis of similarity at each level of the hierarchy
and can therefore be used as a null distribution against which
the actual comparison statistic can be tested. The comparison
statistic for the actual populations are then compared to the
distribution of randomized populations to estimate the prob
ability of obtaining a statistic that large just by chance. The
appropriate population means are subtracted off each trait
value before the randomization procedure so that the among
population variance does not confound the comparisons of
within-population covariance structure.

An alternative testing procedure is to use a bootstrapping
approach (B. Flury, pers. comm. 1993) in which each pop
ulation is repeatedly compared to itself to build a null dis
tribution (see also Zhang and Boos 1992, 1993; Paulsen 1996;
Goodnight and Schwartz 1997). We have implemented such
a procedure (Phillips 1998b), which gives results comparable
to the randomization tests, but report only the randomization
results here because of the appropriateness of the test and
the greater ease of interpretation. However, bootstrapping is
used for setting errors on the genetic estimates.

Singular Matrices.-Because of the nature of the maxi
mum-likelihood matrix comparison statistics, the methods
devised by Flury (1988) will not work on singular or non
positive definite matrices (i.e., matrices with zero or negative
eigenvalues). This is usually not a problem for product-mo
ment-based matrices in which the matrices are guaranteed to
be positive-definite. Matrices constructed using variance
component estimates are known to often have negative ei
genvalues, so this can be a real problem for quantitative
genetic matrices (Hill and Thompson 1978). When negative
eigenvalues occur during the randomization procedure, the

most straightforward approach is to eliminate the offending
matrices from the randomization sample. This elimination
undoubtedly introduces some bias into the statistical test be
cause it is likely that the most extreme matrices are those
that are eliminated, although the degree of bias has yet to be
determined. A more serious problem occurs when the initial
population estimates result in singular matrices, thus pre
cluding analysis. We use a "matrix-bending" procedure
(Hayes and Hill 1981; Kirkpatrick et al. 1990) in which the
eigenvalues of the matrix are adjusted just enough to elim
inate the negative eigenvalues. All subsequent matrices in
the resampling procedure are bent to the same degree. This
bending creates another potential source of bias, although
comparison with parametric approaches that do not require
bending yield very similar results (see below). Maximum
likelihood estimators of the quantitative genetic parameters
themselves may ultimately prove useful for overcoming these
difficulties (Shaw 1987, 1991, 1992).

Tests on Individuals and Family Means.-Some ofthe sam
pling difficulties with covariance components can be over
come if these components are approximated using calcula
tions of the variances and covariances from the population
samples directly. For example, the genetic covariance be
tween two traits can be estimated by the covariance among
the family means (Via 1984), whereas the phenotypic co
variance can be estimated by the covariance among individ
uals, while ignoring family structure. The advantage of these
methods is that the statistical properties of these estimates
are better understood, allowing direct tests of significance.
Further, as long as every trait is measured on every individ
ual/family, then the covariance matrices constructed from
these estimates are guaranteed to be positive-definite. (They
can still be singular, but this is unlikely unless some of the
traits are simple functions of the other traits in the matrix.)
Flury's (1988) methods and tests are designed for these types
of estimates, and so in this case the hierarchy can be tested
directly using parametric methods. The disadvantage of these
estimates is that they are biased, sometimes substantially so
(Roff and Preziosi 1994). The family-mean covariance is bi
ased by the within-family covariance (Via 1984), whereas
the among-individual covariance is biased by the among
family covariance. The individual and family-mean analysis
is implemented in the program CPC (Phillips 1998c). The
hierarchy for phenotypic data can also be tested using matrix
manipulation packages (Klingenberg et al. 1996) or structural
equation modeling routines (Dolan 1996). It seems prudent
to analyze both the variance component and the family-mean
estimates separately, which in turn yield nonparametric and
parametric tests of the hierarchy. The former estimates have
the advantage of being unbiased and not as subject to dis
tributional assumptions, but have not been rigorously justi
fied in this context, whereas the latter estimates are more
precise and based on well-established methodology, but are
subject to bias. Each approach has its own set of strengths
and weaknesses, and therefore any similarities or differences
in the results of these two approaches should provide separate
insights into the actual structure of the matrices.

Calculating these statistical tests is computationally inten
sive, but not prohibitive. The time for analysis scales simi
larly to matrix inversion, or slightly less than the square of
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TABLE 1. Genetic variance-covariance matrices (± SE) for female offspring from the inland population of Thamnophis elegans. Data
from the unconstrained model (i.e., the normal analysis) are on the top line, whereas data constrained to fit the common principal
component (CPC) model are on the second line. A description of the data and characters can be found in Arnold and Phillips (1999).

VENT SUB MID ILAB SLAB POST

VENT 8.17 ± 1.70 3.78 ± 1.67 0.09 ± 0.29 0.65 ± 0.21 0.07 ± 0.18 0.12 ± 0.20
8.59 ± 2.00 3.52 ± 1.67 0.17 ± 0.33 0.78 ± 0.33 -0.06 ± 0.27 0.18 ± 0.23

SUB 8.16 ± 1.73 0.28 ± 0.40 0.24 ± 0.31 0.23 ± 0.21 0.17 ± 0.23
7.60 ± 1.77 0.15 ± 0.35 0.25 ± 0.34 0.14 ± 0.26 0.21 ± 0.22

MID 0.27 ± 0.10 0.08 ± 0.05 0.05 ± 0.06 -0.10 ± 0.05
0.39 ± 0.13 0.09 ± 0.07 0.05 ± 0.07 -0.07 ± 0.06

ILAB 0.03 ± 0.05 -0.02 ± 0.04 0.03 ± 0.05
0.24 ± 0.15 -0.03 ± 0.08 0.07 ± 0.06

SLAB 0.02 ± 0.03 0.02 ± 0.03
0.22 ± 0.12 0.02 ± 0.04

POST 0.09 ± 0.05
0.27 ± 0.11

size of the matrices and the number of populations. Single
runs of the CPC program on modern computer hardware take
from several seconds for small matrices to four hours for a
40 X 40 matrix. Randomization tests multiply these values
by the number of resampling runs conducted. Each random
ization statistic reported here is the result of about a half day
of computing time on a 200Mz PentiumPro computer.

EXAMPLE

To illustrate the principles laid out above, we will analyze
a sample dataset in detail. The example is based on a quan
titative genetic analysis of genetic covariation among sea
lation traits in the garter snake, Thamnophis elegans. A full
description of the dataset is available in Arnold and Phillips
(1999). The data consist of parent-offspring regression es
timates of additive genetic variance and covariance among
six traits for two snake populations, one from a coastal and
the other from an inland site in northern California. There
were 102 litters from the coastal population, 156 litters from
the inland population, and about 10 offspring in each litter.
The G-matrix estimates for female offspring from these pop
ulations are given in Tables 1 and 2. See Arnold and Phillips

(1999) for an analysis of the phenotypic and environmental
matrices, as well as for comparisons between sexes.

Simple inspection of the matrices (Tables 1,2) shows that
change in variance and covariance from one population to
another are not uniform across characters. It is equally evi
dent that patterns of similarity and difference cannot be ob
tained by mere element-by-element comparisons. However,
using the hierarchical approach outlined above reveals a great
deal of shared underlying structure across populations. Here,
the hierarchy is built by beginning at the hypothesis of one
shared principal component and ends at common principal
component structure for the jump-up approach (Table 3). Re
sults are consistent for both the randomization and parametric
tests. The step-up and model-building approaches (Table 4)
are somewhat less consistent, however. The randomization
analysis supports the CPC result, whereas the parametric re
sults suggest CPC(4), the partial common principal compo
nent model with four of the six possible components shared
in common. Note that the difference here is between the
jump-up and step-up approaches, not between the randomi
zation and parametric results, because the parametric results
themselves are different across the two methods. These two

TABLE 2. Genetic variance-covariance matrices (± SE) for female offspring from the coastal population of Thamnophis elegans. Data
from the unconstrained model (i.e., the normal analysis) are on the top line, whereas data constrained to fit the common principal
component (CPC) model are on the second line. A description of the data and characters can be found in Arnold and Phillips (1999).

VENT SUB MID ILAB SLAB POST

VENT 6.88 ± 1.97 0.19 ± 1.66 -0.04 ± 0.25 1.15 ± 0.47 0.30 ± 0.35 -0.04 ± 0.20
5.36 ± 1.81 0.43 ± 1.31 0.10 ± 0.22 0.56 ± 0.34 -0.09 ± 0.20 0.07 ± 0.17

SUB 7.80 ± 2.66 -0.02 ± 0.30 0.03 ± 0.48 0.12 ± 0.35 -0.11 ± 0.25
5.17 ± 1.58 0.04 ± 0.26 -0.07 ± 0.35 0.11 ± 0.21 0.11 ± 0.19

MID 0.01 ± 0.03 0.04 ± 0.06 0.11 ± 0.06 0.03 ± 0.04
0.45 ± 0.17 -0.03 ± 0.11 0.07 ± 0.12 0.10 ± 0.09

ILAB 0.36 ± 0.14 0.47 ± 0.11 0.00 ± 0.06
0.58 ± 0.30 0.22 ± 0.14 0.03 ± 0.10

SLAB 0.37 ± 0.12 0.05 ± 0.06
0.56 ± 0.18 0.05 ± 0.10

POST 0.10 ± 0.05
0.48 ± 0.16
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Likelihood Ratio Statistic
FIG. 3. Null distributions for tests of the Flury hierarchy using a
randomization test for the comparison of genetic matrices for fe
males from coastal and inland populations of Thamnophis elegans.
(A) Test of the common principal component model. (B) Test of
the proportionality model. P-values (Table 3) are calculated as the
fraction of randomization replicates that exceed the likelihoods for
the actual comparisons (arrows). The histograms show results from
10,000 randomization runs.
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on parametric calculations (Flury 1988). Thus, barring further
theoretical developments, the randomization approach ap
pears necessary for the proper analysis of the covariance
component-based matrices. Again, there is a satisfying con
sistency between the parametric and randomization results in
both in the level of the hierarchy chosen and in the approx
imate P-values calculated (Table 3).

approaches can yield differences when one step in the hi
erarchy yields a large change (step-up) while the sum over
all the effects is relatively small (jump-up). The multiple
decisions that must be made while using the step-up proce
dure can make it difficult to interpret, but with the jump-up
procedure there is a danger that an overall pattern of simi
larity might swamp more subtle patterns of difference when
summing over all differences (see a similar discussion in Roff
1997, p. 111). Neither method is foolproof. We will use the
CPC result because it is based on the covariance components
and provides the simplest statistical interpretation. However,
the model-building perspective suggests that parameter es
timates based on CPC(4) will probably be better. Neverthe
less, the qualitative result of overall similarity in matrix struc
ture is the same no matter which approach is used.

The P-values from the randomization results are calculated
from 10,000 resampling runs, yielding distributions of the
form shown in Figure 3. These distributions have a chi-square
shape (indeed they are almost normal), but the magnitude of
the values on the x-axis do not match the expectation based

Regression
Litter-mean estimate estimate

(parametric) (randorniza-
tion)

Hierarchy df X2 P P

Equality 21 81.66 <0.0001 0.0005
Proportionality 20 73.77 <0.0001 0.0003
Full CPC 15 20.95 0.1384 0.3949
CPC(4) 14 14.65 0.4020 0.3719
CPC(3) 12 14.12 0.2931 0.3790
CPC(2) 9 7.10 0.6264 0.5107
CPC(l) 5 5.10 0.4035 0.3950
Unrelated

TABLE 3. The Flury hierarchy for the comparison of genetic ma
trices for coastal and inland females using the jump-up procedure.
At each step in the hierarchy a hypothesis is tested against the
hypothesis at the bottom of the hierarchy, viz. Unrelated. Two es
timates of the genetic matrix are compared: one based the variance
covariance of litter means (with parametric evaluation of sampling
properties) and one based on offspring-mother regressions (with
randomization evaluation of sampling properties).

TABLE 4. The Flury hierarchy for the comparison of genetic matrices for coastal and inland females using the step-up procedure. At
each step in the hierarchy the hypothesis labeled "upper" is tested against the hypothesis on the step below, "lower." Two estimates
of the genetic matrix are compared: one based the variance-covariance of litter means (with parametric evaluation of sampling properties)
and one based on offspring-mother regressions (with randomization evaluation of sampling properties). The best solution under the
model-building approach is indicated by the minimum value of Akaike information criterion (AIC) under the parametric estimates (CPC[4]
in this case).

Regression
Litter-mean estimate estimate

Hierarchy (parametric) (randorniza-
tion)

Upper Lower df X2 P AIC P

Equality Proportionality 1 7.88 0.0050 81.6 0.2029
Proportionality Full CPC 5 52.82 <0.0001 75.8 0.0002
Full CPC CPC(4) 1 6.30 0.0121 33.0 0.5083
CPC(4) CPC(3) 2 0.54 0.7648 28.7 0.5177
CPC(3) CPC(2) 3 7.02 0.0714 32.1 0.5223
CPC(2) CPC(l) 4 2.00 0.7357 31.1 0.5062
CPC(l) Unrelated 5 5.10 0.4035 37.1 0.3992
Unrelated 42.0

Total 21 81.66
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The adequacy of the CPC model for fitting the data is
demonstrated by the correspondence between the estimated
matrices and the matrices generated under the constrained
hypothesis (Tables 1, 2). The fit is somewhat better for the
inland population (Table 1) than for the coastal population
(Table 2), probably because a high correlation between ILAB
and SLAB required the coastal population to be bent before
analysis. Element by element, there is a fairly good corre
spondence, given the errors in the estimates. The size of the
errors do raise the concern that part of the pattern of shared
similarity could be caused by a lack of power (see below),
despite the relatively large number of litters sampled in both
populations. A more detailed interpretation of the pattern of
correlation among the traits is given in Arnold and Phillips
(1999).

DISCUSSION

The analysis of genetic variance-covariance structure using
a hierarchical approach can reveal shared similarities across
matrices that go well beyond the simple question of matrix
equality (Fig. 1, Table 3). Given the central role that the G
matrix can play in understanding evolutionary processes
(Lande 1988), an appropriate analysis of G itself should con
tribute to our understanding of multivariate evolution. The
G-matrix must evolve on some sort of continuum. On short
evolutionary time scales, we would expect G to show equality
across populations, whereas on longer time scales, G must
necessarily diverge as large-scale morphological evolution
occurs (Lofsvold 1986). A hierarchical analysis of G-matrix
structure allows for a finer-scale analysis of how this diver
gence is generated. Would we expect divergence in G to
follow the steps down the hierarchy? Clearly, as two popu
lations diverge, equality of G will be lost at some point, but
it is not clear at what time scale this will occur. Also, it is
not necessary that populations should maintain common ma
trix structure as they diverge, so the presence of shared struc
ture provides an evolutionary and/or genetic signal that war
rants further study. Under restricted circumstances, selection
can maintain common structure throughout the process of
divergence (Phillips, unpubl. data), whereas genetic drift is
expected to generate proportional matrices (Lande 1979), al
though there is likely to be a large amount of variance around
this average (P. C. Phillips, M. C. Whitlock, and K. Fowler,
unpubl. data). As more studies begin to explore the evolution
of G-matrix structure, questions relating to the time scale of
divergence and the way that structure is maintained can begin
to be addressed (e.g., Pfrender 1998).

Further, the inherent structure of G is interesting in its own
right. For instance, it is possible that multivariate divergence
in population means might follow the direction determined
by the principal component structure of G (Lande 1979; Zeng
1988; Schluter 1996). It has also been argued that the struc
ture of G can reflect underlying developmental processes and
the nature of morphological integration (Cheverud 1982,
1984). As a practical matter, statistical techniques that rely
on covariance structure such as distance metrics (Krzanowski
1996), canonical variates (Neuenschwander and Flury 1995),
and discriminant functional analysis (Flury and Schmid
1992) can be affected by divergence in covariance matrices

among populations, yet the preserved common structure can
be used as a source of additional information.

A number of studies have demonstrated the utility of the
Flury hierarchy in phenotypic analyses (Airoldi and Flury
1988; Klingenberg and Zimmermann 1992; Klingenberg and
Spence 1993; Klingenberg et al. 1996; Steppan 1997). In
particular, Steppan (1997) has examined the difficult question
of how phenotypic covariance structure evolves in a phylo
genetic context. This approach will be crucial to understand
ing the pattern and timescale of G divergence. The methods
presented here will need to be combined with a more rigorous
comparative approach (Felsenstein 1985; Hansen and Martins
1996) before this question can be adequately addressed. Klin
genberg et al. (1996; see also Flury and Neuenschwander
1985; Neuenschwander 1991) have extended the CPC ap
proach to even more complexly patterned matrices. For ex
ample, in studies of development (e.g., Cheverud et al. 1983;
Atchley 1987) and genotype-by-environment interactions
(Via 1984; Via and Lande 1985; Gomulkiewicz and Kirk
patrick 1992) one is concerned with both correlations among
traits within a single age or environment and correlations
across ages or environments. This increase in trait number
greatly enlarges the G-matrix and generates natural partitions
of within and between age/environment relationships within
the matrix. We might expect the structure of the within-class
covariances to be different from the between-class covari
ances, but these separate structures can in turn share simi
larities with one another (Klingenberg et al. 1996). Expand
ing the current analysis for quantitative genetic data to in
clude these sorts of models is in principle straightforward,
although in practice it will take a fair degree of computational
work.

Covariances versus Correlation

Measuring the association between traits using covariances
provides a natural scale for evolutionary analysis (Lande
1979). However, it is well known that the results from prin
cipal component analysis are strongly influenced by mea
surement scale. Traits measured on larger scales tend to have
larger variances and therefore tend to cluster by themselves
in the analysis. A common solution to this scaling problem
is to standardize the variables so that the analysis is conducted
on the correlation structure instead of the covariance structure
(e.g., Kohn and Atchley 1988). Unfortunately, although they
are related to one another, covariance structure and correla
tion structure can be substantially different. Indeed, it is not
difficult to construct two genetic variance-covariance matri
ces that yield the same genetic correlations yet diverge sub
stantially in their response to selection (K. Spitze, pers.
comm. 1995).

There is nothing to prevent the application of the Flury
hierarchy to correlation matrices, although the hypothesis of
proportionality does not really apply in this case. Also, the
sampling properties of correlations are quite different from
covariances, so care should be exercised when using the para
metric approaches. The problem with changes in scale is that
principal component grouping of the traits can differ from
analysis to analysis. In particular, the order of the principal
components is strongly dependent on the total variance of
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the traits being analyzed. Although not discussed by Flury
(1988), the common principal component hypotheses need
not be constrained to follow any particular ordering rule.
Principal components have no inherent order, although they
are traditionally ranked according to the magnitude of their
associated eigenvalues. There is no biological basis for be
lieving that the principal components with the largest eigen
values are more likely to have conserved structure than prin
cipal components with smaller eigenvalues (although those
with larger eigenvalues will tend to be better estimated).
Therefore, the scaling problem can be eliminated to some
extent by formulating hypotheses of similarity on biological
grounds rather than on the more arbitrary rankings based on
scale. For example, there may be functional or selective rea
sons to expect a particular set of traits to maintain their co
variance relationships, even if the total amount of variance
explained by those traits is lower than other traits (indeed
this may often be the case). A complication of changing order
is that the principal components with larger eigenvalues are
likely to have significantly smaller errors associated with
them, so that the lower-order principal components might be
found to be similar simply on the basis of measurement error.
The full implications of PC ordering have yet to be worked
out. Because of the role they play in evolutionary analysis,
we advocate testing the covariances themselves on their nat
ural scale, with careful attention being paid to the nature of
the hypotheses under study.

Null Hypotheses and Statistical Power

One potentially confusing aspect of the way in which we
have described the Flury hierarchy is that although we have
presented building the hierarchy from the bottom up, statis
tical power in the analysis actually comes from the top down.
Beginning at the top of the hierarchy with equality, each
successive step down the hierarchy involves adding more
parameters to fit the matrices (e.g., proportionality requires
one additional parameter per population, the proportionality
constant, in addition to the maximum-likelihood estimate for
the best pooled matrix from equality). Statistical testing is
based on evaluating whether adding an additional parameter
improves the fit of the model, and therefore the overall null
hypothesis in these comparisons is matrix equality. Experi
ments with insufficient power will therefore tend to find ma
trix similarity when in fact there is none. Although power
flows from the top down, our hypothesis-testing framework
is from the bottom up, which is the appropriate framework
given the way that matrix similarity is actually built. A cyn
ical view of this approach would suggest that the location in
the hierarchy is determined by a balance between Type I and
Type II statistical errors; the point in which one has sufficient
power to reject a hypothesis of certain types of similarity
(e.g., equality) while not being able to reject more complex
measures of similarity (e.g., CPC). Although there is un
doubtedly some truth to this idea, in practice, comparing
matrices in this hierarchical fashion appears to reflect the true
underlying similarities between matrices, and it is actually
not too difficult to show that a set of matrices do not share
any common structure (e.g., Steppan 1997). Power analysis
of the Flury hierarchy remains an unsolved problem at this

point, especially for quantitative genetic data, but one that
should not prove to be difficult to address (for a power anal
ysis of individual correlation coefficients, see Phillips
1998d).

The appropriateness of the randomization procedure also
needs more critical evaluation, and this analysis is currently
being undertaken. Nevertheless, it is very encouraging that
the parametric tests, which are based on a number of unlikely
assumptions, and the randomization tests, which do not make
these assumptions but need more statistical validation, usu
ally give the same qualitative answer. As discussed above,
each type of test will have its own power properties, and
Arnold and Phillips (1999) provide an example of when the
increased power of the parametric tests may yield slightly
more discrimination among matrices. However, power can
not be the sole criterion for statistical adequacy because with
sufficient power it is likely that any two sample matrices will
be found to differ in many respects. Ultimately, the reason
ableness of the results depends on an inspection of the ma
trices themselves, their principal component structure, and
the results from the Flury hierarchy under the constrained
hypothesis.

Other Techniques for Comparing Matrices

Flury's (1988) hierarchical approach to matrix compari
sons provides reconciliation for two opposing positions that
have developed within the field of quantitative genetics. Ma
trix correlation was used in the first quantitative comparisons
of G-matrices (Lofsvold 1986; Kohn and Atchley 1988; Cow
ley and Atchley 1992). Objections were raised to this ap
proach on two grounds (Shaw 1991, 1992). First, the sam
pling distribution of the matrix correlation is complicated by
the fact that the same set of families is used to estimate each
element in the G-matrix. This family structure in the data
induces sampling correlations between matrix elements. Pro
ponents of matrix correlation tried to circumvent this problem
by permutation tests in which the labels on the rows and
columns of one G-matrix are shuffled, the correlation is cal
culated, and so on. Opponents of matrix correlation argued
that such permutation tests were inappropriate because the
labels correspond to traits, rather than to a set of commen
surate identities that could be shuffled at random (e.g., a set
of population names). Second, matrix correlation usually
tests the null hypothesis that the correlation is zero (rM =
0). Opponents have argued on evolutionary grounds that the
appropriate null hypothesis is equality of G-matrices, which
is related to the hypothesis rM = 1. Maximum-likelihood ratio
tests were put forward as a direct way to test for equality of
G-matrices (Shaw 1987, 1991). Using Flury's (1988) per
spective, we can see these two camps at opposite ends of a
hierarchy of tests (Cowley and Atchley 1992). For example,
in the snake data presented here, the correlation between the
matrices is extremely high (rM = 0.94), yet the matrices are
not equal to one another. Information about the shared struc
ture of the matrices is lost using both approaches.

A variety of interesting tests reside in the middle of the
hierarchy. In an illuminating discussion of the history of
matrix comparisons, Flury (1988) points out that many tests
are extrapolations from the univariate to the multivariate case.
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In the univariate case there are only two outcomes: either the
variances are the same or they are different. In the multi
variate case, however, a whole range of possibilities exists
between equality and difference. In particular, the set of com
parisons involving principal components has no counterpart
in the single trait case. In this sense the Flury hierarchy
provides a truly multivariate perspective on the problem of
comparing variance-covariance matrices. The power of the
hierarchical approach is that it enables us to move beyond
the simple issue of whether the G-matrices differ and to ask
in what ways they differ.

How can we measure the degree of difference between two
matrices? There seems to be no universal answer to this ques
tion. No known metric is a silver bullet. Matrix correlation,
likelihood ratios, or total X2 each give a single answer to the
question of how much matrices differ. The problem with all
of these single answers is that they cannot reflect the diversity
of ways in which pairs of matrices can differ. Graphical ap
proaches (Campbell 1981; Arnold 1992) are plagued by this
same difficulty. The G-matrix is multivariate and so too is
the difference between any pair of G-matrices.
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