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Quantitative genetic models of sexual selection have generally failed to provide a direct connection to speciation and to explore

the consequences of finite population size. The connection to speciation has been indirect because the models have treated only

the evolution of male and female traits and have stopped short of modeling the evolution of sexual isolation. In this article we

extend Lande’s (1981) model of sexual selection to quantify predictions about the evolution of sexual isolation and speciation. Our

results, based on computer simulations, support and extend Lande’s claim that drift along a line of equilibria can rapidly lead to

sexual isolation and speciation. Furthermore, we show that rapid speciation can occur by drift in populations of appreciable size

(Ne ≥ 1000). These results are in sharp contrast to the opinion of many researchers and textbook writers who have argued that

drift does not play an important role in speciation. We argue that drift may be a powerful amplifier of speciation under a wide

variety of modeling assumptions, even when selection acts directly on female mating preferences.
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Although quantitative genetic models of sexual selection have

illuminated many evolutionary phenomena, they have generally

failed to make explicit predictions about speciation. The list of il-

luminated phenomena includes runaway dynamics (Lande 1981),

the “sexy son” hypothesis (Kirkpatrick 1985; Pomiankowski et al.

1991), good genes (Schluter and Price 1993; Kirkpatrick 1996;

Iwasa and Pomiankowski 1999), and sexual conflict (Gavrilets

2000; Gavrilets et al. 2001, Gavrilets and Hayashi 2005). The fact

that rapid evolution of sexual signals occurs under some condi-

tions in most models in this family implies a strong connection

to speciation. Furthermore, the existence of equilibrium lines or

cycles in some models carries the implication that pairs of repli-

cate populations could speciate as a consequence of equilibrium

differences in sexual signals (Mead and Arnold 2004). Despite the

apparent clarity of these implications about speciation, the models

in question stop short of actually modeling the approach to specia-

tion. In particular, most quantitative genetic models have provided

only speculations about the extent of speciation because they have

failed to make explicit the connection to sexual isolation.

The reason for the disconnect between quantitative genetic

models of sexual selection and speciation is that the models have

primarily considered evolution within single populations, and they

have failed to specify the relationship between trait evolution and

sexual isolation among populations. To successfully make the

needed connection, a model must sample pairs of evolving popu-

lations and assess their sexual isolation. The primary, novel aim

of this article is to make explicit statements about the evolution

of sexual isolation by combining a model for evolution by sexual
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selection (Lande 1981) with a model for sexual isolation (Arnold

et al. 1996). As a result, we can quantitatively describe the con-

ditions that can lead to speciation by sexual isolation in terms

of estimable parameters of selection, inheritance, and population

size.

Translating the output of models of sexual selection into the

currency of speciation (the extent of reproductive isolation) is im-

portant for three reasons. First, by explicitly modeling the time

course of evolving sexual isolation, we will show that drift can

help promote speciation in only a thousand generations. Further-

more, histories in which periods of increasing isolation alternate

with periods of decreasing isolation are common in our sim-

ulations. This pattern, in which isolation waxes and wanes, has

far-reaching implications but is seldom discussed in the speciation

literature. Second, the needed translation connects the literature on

sexual selection models (Mead & Arnold 2004) with an extensive

empirical literature on sexual isolation. By modeling the evolution

of sexual isolation—and not just divergence in sexually selected

traits—we can compare our theoretical results with patterns of

sexual isolation observed in major empirical surveys (Tilley et al.

1990; Coyne and Orr 1997). In particular, we show that under

realistic values of inheritance, selection, and population size, drift

could have played an important role in producing the patterns of

sexual isolation (and hence speciation) that have been observed

in radiations of plethodontid salamanders and Drosophila. Third,

the approach we outline promises a solution to the long-standing,

notorious problem of constructing discriminating tests among

the many alternative models of sexual selection (Bradbury and

Andersson 1987). By establishing a new model-data connection,

we should be able to test sexual selection models using the pre-

dictions they make about patterns of sexual isolation, a possibility

that we will explore in a later article.

A surprising limitation of most quantitative genetic models

of sexual selection is that they fail to explore the evolutionary

stochasticity that arises from finite population size. By assuming

infinite population size, most models make predictions about the

expected evolutionary behavior of the average population, while

ignoring variation about that expectation. This limitation charac-

terizes virtually all of the 30 models of sexual selection reviewed

by Mead and Arnold (2004). The problem is that by ignoring

such stochastic variation we may miss the essential message of

the model. For example, although the deterministic equilibrium

for a model may be a point in phenotypic trait space, stochasticity

(i.e., genetic drift) may produce a considerable cloud of variable

outcomes about that point. A focus on the cloud is important be-

cause, as we will show, stochasticity can amplify the opportunity

for sexual isolation and speciation. Consequently, our secondary

aim is to explore the implications of finite population size for the

evolution of sexual isolation and speciation. Lande (1981) pro-

vided a foundation for this exploration in the form of equations

for the variance expected among evolving replicate populations

in sexual signals and preferences. Nevertheless, Lande (1981) did

not explore the stochastic evolution of sexual isolation. We use

computer simulations to assess the validity of some of Lande’s

approximations, as well as to make detailed portrayals of the

stochastic evolution of sexual isolation. Although we focus our

combined analytical and simulation approach on a single evolu-

tionary model (Lande 1981), we argue that this approach could

be profitably applied to any of the 30 quantitative genetic models

of sexual selection that have been constructed so far (Mead and

Arnold 2004).

Theoretical Background
We used a model developed by Lande (1981) to simulate the

evolution of behavioral isolation by sexual selection in finite pop-

ulations. According to this model, evolution of a male ornamental

trait is driven by natural and sexual selection. Female mating

preferences for that male trait evolve as a correlated response.

The male ornament, z, and female preference, y, are normally

distributed, sex-limited quantitative traits with phenotypic means

z̄ and ȳ and variances σ2 and τ2. Likewise, the additive genetic

(breeding) values of the two traits are normally distributed. The

additive genetic variances of both the male ornament (G) and

female preference (H) are assumed to be in mutation–selection

balance and to remain approximately constant (Lande 1976). Ad-

ditive genetic covariance between the male ornament and female

preference (B) is created by linkage disequilibrium that arises

from mate choice and sexual selection and is likewise assumed

to remain approximately constant in mutation–selection balance

(Lande 1980, 1981). Males do not protect or provision mates. Ev-

ery female is inseminated each generation, and hence there is no

fecundity selection on female preference nor is there any direct

viability selection on preference. The male ornament experiences

weak natural (viability) selection, described by a Gaussian curve

with an intermediate optimum θ and width ω. Following viability

selection, the male trait distribution experiences sexual selection

arising from female mate choice. The sexual preference of each

female is described by a Gaussian curve with an intermediate

optimum y and width ν. In other words, a female’s preference is

absolute in the sense that she most prefers to mate with a male

with ornament value y, and her tendency to mate falls off as the

ornament of a prospective mate deviates in either direction from

that value. The overall selection gradient on the male trait (β) is

therefore generated by natural selection towards an optimal male

phenotype and sexual selection generated by Gaussian mating

preference functions

β = S

σ2
= ȳ/α − (1 + 1/α)z̄ + θ

ω2
,
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where S is the total shift in the male trait mean caused by se-

lection within a generation (the overall selection differential) and

α = ν2/ω2. Because there is no direct selection on the female

preference trait y, it evolves by genetic drift and as a correlated

response to selection on the male trait. At equilibrium the forces

of natural and sexual selection balance (β = 0) yielding a line of

equilibrium given by the equation

ȳ = (α + 1)z̄ + αθ.

The per generation deterministic change in the means of the

male ornament and the female preference is given by the equations

�z̄ = 1

2
Gβ, (1a)

�ȳ = 1

2
Bβ. (1b)

Away from the line of equilibrium, populations evolve in

response to selection along lines with a slope given by the genetic

regression B/G. Populations evolving in response to selection

either walk-towards a line of stable equilibrium (when B/G <

α + 1) or runaway from a line of unstable equilibrium (when

B/G > α + 1). In this article we explore the stable (walk-towards)

case, the most likely outcome in many natural systems (Mead

and Arnold 2004). Selection ceases once a population reaches the

stable line of equilibrium, but the population may drift along the

line and will be driven back to the line by selection if it drifts

away from the line.

Lande (1981) also characterized the process of population

differentiation by drift along the line of equilibrium. Let the pop-

ulation mean phenotype be a column vector, (z̄ ȳ)T , where T de-

notes transpose. Each generation sampling in a finite population

of effective size Ne will produce variance among a set of replicate

populations in this vector that is given by the variance–covariance

matrix

V = 1

Ne

(
G B

B H

)
. (2)

At any generation t, the probability distribution of mean phe-

notypes is bivariate Gaussian. Using a diffusion approximation,

Lande (1981) found that the variance–covariance matrix for this

distribution at generation t converges to approximately

D(t) = H
(
1 − r2

g

)
t

Ne(α + 1 − B/G)2

(
1 α + 1

α + 1 (α + 1)2

)
, (3)

where rg = B/
√

G H is the additive genetic correlation between

the male ornament and female mating preference. The diagonal

elements in this matrix are the among-replicate variances in trait

means (male ornament and female preference). The off-diagonal

element is the among-replicate covariance between male and fe-

male trait means. Note that the correlation in the matrix on the

right-hand side of equation (3) is 1, so the evolutionary dynamics

are equivalent to univariate evolution along the line of equilibrium.

Consequently, one issue that we can resolve with simulation is the

question of how much additional variance might be contributed

by drift away from, and response to selection back towards, the

line of equilibrium. As we will see, the contribution is negligible.

In the next section we extend the Lande (1981) model so that it

makes explicit predictions about sexual isolation.

A pair of replicate populations, A and B, can diverge in aver-

age phenotype and hence become sexually isolated as their mean

male and female trait values are shuffled towards and along a line

of equilibrium by selection and drift. In any given generation,

sexual isolation can be assessed by calculating the average prob-

ability of mating within and between populations A and B given

the means and variances for male ornaments and female pref-

erences in the two populations. Formulas are derived in Arnold

et al. (1996) under Lande’s (1981) assumptions for the case of

absolute mating preferences. In extending Lande’s (1981) model

to make predictions about sexual isolation, we assume that either

just two traits, z and y, account for sexual isolation, or that z and y

represent linear combinations of many male and female traits that

jointly account for sexual isolation. Under the second interpreta-

tion, we assume that the coefficients of the linear combinations

do not evolve.

The probability that a randomly chosen female will mate

with a male of phenotype z, ψ (z), is a key female variable in

this formulation. Averaging this probability over the phenotypic

distribution of males yields the average probability of mating, π,

given an encounter between a male randomly chosen from one

population and a female randomly chosen from the same or a dif-

ferent population. This conditional probability, π, coincides with

the probability of mating that is commonly assessed in studies of

sexual isolation (e.g., Malogolowkin-Cohen et al. 1965), thereby

providing a direct connection between sexual selection models

and empirical data on sexual isolation. This overall probability

of mating, π, reaches a maximum value when the mean of the

male trait, z̄, coincides with mean value of mates most preferred

by females, ȳ, and falls off as a Gaussian curve as the male mean

deviates in either direction from the female mean. More exactly,

the average probability of mating when the female is drawn from

population i and the male from population j is

πij = cij exp
( − d2

ij/2�2
)
, (4)

where 0 ≤ cij ≤ 1 is the distance between the mean of the most

preferred mate of females in population i and the mean of the

male trait in population j, dij = ȳi − z̄ j , and �2 = τ2 + υ2 +
σ2. Thus, this expression can be used to calculate the average
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probabilities of mating in encounters within and between popu-

lations. The constant cij can be thought of as the probability of

mating between partners when the male and female means coin-

cide. For simplicity, we assume that cij = 1 for all combinations

of population encounters. Note that the probability given in equa-

tion (4) is the overall probability of mating given an encounter

between potential partners drawn randomly from populations i

and j, and not necessarily the frequency of matings within and

between populations over a generation.

Total sexual (joint) isolation between populations A and B

can be calculated as

JI = πAA + πBB − πAB − πBA. (5)

JI is a conventional measure of sexual isolation that ef-

fectively ranges from zero (when all within and between pop-

ulation encounters are equally successful) to two (when all

within population encounters are successful but all between

populations encounters are not) (Bateman 1949; Merrell 1950;

Malogolowkin-Cohen et al. 1965). Because JI does not in-

volve ratios of variables, it has smaller standard errors than

some other measures of isolation. A more complete illustra-

tion of the dynamics of Lande’s (1981) model and its relation-

ship to JI in our simulation model is available at the website

http://oregonstate.edu/∼uyedaj/sexualselection.html.

We can also obtain an expression for the expected value of

JI under Lande’s (1981) assumptions. Because the difference be-

tween z̄ and ȳ within populations is expected to be negligible

compared to the corresponding difference between populations,

we can make the simplifying assumption that dAA = dBB = 0. This

simplification yields πAA = πBB = 1 and πAB = πBA. Thus, the

key probability affecting the distribution of JI is the distribution of

interpopulation mating probabilities (πAB and πBA). The distribu-

tions of these probabilities are identical and simply a function of

the distribution of male phenotype among replicate populations at

generation t, which can in turn be obtained using Lande’s disper-

sion matrix equation (3). Using the distribution function method,

we can derive the probability density function (PDF) of πAB at

generation t (Appendix), so that the probability that πAB takes the

value x at generation t is

fπAB (x) = �2x�2/2Dz (t)

x
√−2πDz(t)�2 ln(x)

, for 0 ≤ x ≤ 1, (6)

where Dz(t) is the variance of z̄ among replicate populations

at generation t as approximated by the first element of Lande’s

dispersion matrix D(t) (eq. 3). Although this density func-

tion in equation (6) is not well characterized, it can be eval-

uated numerically. Assuming that the within population mat-

ing probabilities are close to 1, the expected value of JI at

generation t is 2(1 − E[ πAB(t)]), where E[ πAB(t)] is the ex-

pected value of πAB at generation t, which is obtained from

equation (6).

Methods
THE SIMULATION MODEL

We simulated the evolution of trait means in 10,000 independent

replicate population pairs for 1000–10,000 generations for each

of 324 parameter combinations in a fully factorial design. Each

replicate consisted of a pair of populations that started at the

same point on the line of equilibrium, the natural selection opti-

mum for the male trait (z̄ = ȳ = θ). For convenience and without

loss of generality, we scaled z so θ = 0. Note that this scaling

convention does not imply that there is an absence of the male

ornament at the optimum, θ. Each generation, we calculated the

total deterministic response to selection in each population using

equation (1). Following selection, the per generation change due

to drift was sampled from a bivariate normal distribution with

zero means and a variance–covariance matrix given by equation

(2) and added to the selection response. After 1,000 and 10,000

generations, we calculated JI for each population pair to gener-

ate a distribution of 10,000 replicate values of JI. The mean and

variance of JI and the proportion (Pi) of JI values greater than 1.6

(see below) were obtained from this distribution. All simulations

and analyses were performed in R (R Development Core Team

2007).

Wherever possible we made benign and/or biologically real-

istic choices of parameter values. We standardized the phenotypic

variances of the two traits before selection, so that σ2 = τ2 = 1.

We simulated all combinations of cases in which natural selection

was relatively weak (ω2 = 25, 50, and 100) and sexual selection

was relatively strong (ν2 = 5, 10, and 20), so that α = ν2/ω2

ranged from 0.05 to 0.8. The values of ω2 that we used corre-

spond to the weak end of a distribution of values for stabilizing

selection estimated in natural populations (Kingsolver et al. 2001;

Estes and Arnold 2007). Stinchcombe et al. (2008) have pointed

out a common error in the estimation of coefficients of stabiliz-

ing/disruptive selection (γ). The range of ω2 values that we used

corresponds to a γ range of −0.04 to −0.01, assuming no direc-

tional selection (β = 0), which is well within the span of true

values of γ reported by Stinchcombe et al. (2008) and, indeed, at

the commonly observed, weak end of the stabilizing selection dis-

tribution. (See Estes and Arnold (2007) for the formula we used to

convert between γ and ω2.) Measurements of female preference

functions are rarer than estimates of stabilizing selection, but nev-

ertheless, studies of acoustic insects and amphibians (Gerhardt

and Huber 2002) suggest that when preference functions are uni-

modal, curvature is weak compared with the distribution of male

trait values (i.e., ν2 > σ2). We varied G and H so that the ge-

netic correlation between ornament and preference was in the
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moderate-to-high range (rg = B/
√

G H = 0.6 − 0.9). Parameter

values in this range are consistent with selection experiments in

which a substantial correlated response in female preferences was

detected after just a few generations of selection on male orna-

ments (Bakker 1993; Houde 1994; Wilkinson and Reillo 1994;

Hollocher et al. 1997; Blows 1999; Gray and Cade 2000; Wagner

et al. 2001). Finally, we used moderate to relatively large effec-

tive sizes (Ne = 500, 1000, 5000) to be consistent with empirical

estimates (Estes and Arnold 2007) and to satisfy the assumption

that genetic variances and covariances would be maintained by

mutation–selection balance (Lande 1976, 1981).

In evaluating our results, we used a value of JI > 1.6 as

a criterion for substantial sexual isolation. In a survey of sexual

isolation in Drosophila, Coyne and Orr (1997) used one minus the

ratio of the frequencies of heterospecific to homospecific matings

as a measure of sexual isolation and found that in a strong majority

of sympatric species the value of this index was 0.8 or higher.

Assuming that πAA = πBB = 1, a value of 0.8 for their index

corresponds to JI = 1.6. Likewise, in a survey of sexual isolation

among 31 allopatric pairs of populations of salamanders in the

Desmognathus ochrophaeus complex, JI ranged from 0.20 ± 0.16

to 1.50 ± 0.12 (Arnold et al. 1996), again suggesting that JI =
1.6 is an appropriate criterion for substantial isolation.

In addition to the full simulation model, we used Lande’s

diffusion approximation (Lande 1981, eq. 3) and the PDF of πAB,

equation (6), to generate distributions of JI for the same set of

parameter combinations. These distributions were compared to

Figure 1. Sexual isolation between populations that have diverged along the line of equilibrium. The axes represent population means

for a male trait and female preference. The upper portion of each graph shows the line of equilibrium predicted by the model. The lower

portion of each graph shows the distributions in two independent populations of the male trait (solid lines) and the population-level

average female preference (dashed lines). The scale in both portions is in units of within population phenotypic standard deviation of

the male trait. (A) Two populations that have experienced modest divergence lie relatively close to each other on the line of equilibrium,

resulting in a modest level of sexual isolation (JI = 0.89). (B) The two populations have experienced appreciable divergence, resulting in

almost maximal sexual selection (JI = 1.95). Parameter values for this example are: σ2 = 1, τ2 = 1, and ν2 = 5.

the full simulation model to verify the accuracy of the simplifying

assumptions used to derive equations (3) and (6). Methods are

described in more detail in Supporting Appendix S1.

Results
SIMULATED EVOLUTION OF SEXUAL ISOLATION

Simulations of the evolution of a male trait and female preference

based on Lande’s (1981) model show that drift promotes rapid

divergence in sexually selected traits. The model predicts a line

of neutral equilibrium for the population means of the male trait,

z̄, and female preference, ȳ, along which the forces of natural

and sexual selection on the male trait exactly balance (Fig. 1).

This equilibrium line is either stable or unstable, depending on

parameters of genetic variance in the two traits and the strength

of natural and sexual selection (Lande 1981). Here we consider

only biologically realistic parameter values for which the line of

equilibrium is stable; that is, populations that drift away from the

line evolve back towards it. Independent populations evolve along

the line by genetic drift, so that two populations may diverge from

each other along the line of equilibrium. As the male trait distribu-

tion in one population diverges from the female preference in the

other population, the probability of mating between populations

decreases. We estimate the degree of sexual isolation between

two populations by the joint isolation index (JI). Figure 1 illus-

trates an instance of modest isolation (Fig. 1A, JI = 0.89) and

an instance of profound isolation (Fig. 1B, JI = 1.95). The time
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Figure 2. Two examples of simulated evolutionary trajectories for

sexual isolation. Joint isolation index (JI) is shown as a function

of time for two pairs of populations (shown in blue and green). JI

waxes and wanes as the populations drift away from or towards

each other along the line of equilibrium. The horizontal dotted

line corresponds to JI = 1.6, which may be considered a substantial

level of sexual isolation (see text). Parameter values are: G = H =
0.6, γ = 0.7, Ne = 1000, ω2 = 50, ν2 = 5 (see text for explanation

of parameters).

course for evolution of isolation in a sample run can be viewed at

http://oregonstate.edu/∼uyedaj/sexualselection.html.

Because drift along the line of equilibrium is a random walk

process, the trajectories of population pairs usually do not show a

monotonic increase in sexual isolation. Instead, simulated pairs of

populations may experience temporary periods of substantial sex-

ual isolation (i.e., JI > 1.6) and then return to a level of isolation

that in sympatry would allow interbreeding (Fig. 2). Nonetheless,

the variance of trait values among independently evolving pop-

ulations increases with time (eq. 3). As a result, both the mean

value of JI across a large number of simulated population pairs

and the proportion of pairs of populations at sexual isolation (JI >

1.6) increase monotonically under biologically realistic parame-

ter values, as shown in Figure 3. The change from a unimodal to a

bimodal distribution of JI, apparent in Figure 3, is characteristic

of simulations under realistic parameter values resulting from the

fact that JI is bounded at 2. Given enough time, the proportion of

pairs of populations at complete isolation (i.e., πAB = πBA = 0,

JI ≈ 2) asymptotically approaches 1 for all parameter values for

which D > 0.

EFFECTS OF POPULATION SIZE, INHERITANCE, AND

SELECTION ON THE EVOLUTION OF SEXUAL

ISOLATION

The evolution of sexual isolation depends on parameters of inher-

itance, population size, and selection, and we will consider their

Figure 3. Distribution of joint isolation (JI) in 10,000 indepen-

dent pairs of populations over 10,000 generations of simulated

evolution, showing mean isolation (solid line) and standard de-

viation (dashed lines). Histograms show the distribution of JI at

2000-generation intervals, with shaded bars indicating substan-

tial sexual isolation (JI > 1.6). Note that JI ranges from 0 to 2

and is bimodally distributed at and beyond generation 4000. The

proportion of replicates with JI > 1.6 increased from 9.1% in gen-

eration 2000, to 44.5% at generation 10,000. Parameter values as

in Figure 2.

effects in that order. In light of the fact that the distribution of

JI is often bimodal (Fig. 3), we used the proportion of replicate

pairs that achieved a substantial level of isolation (JI > 1.6) as a

summary measure of isolation for a set of replicate runs. In the

discussions that follow, note that because we have standardized

phenotypic variance of the male and female traits to 1, their addi-

tive genetic variances, G and H, are equivalent to heritabilities. In

our simulations, evolution of sexual isolation by drift increased as

either the genetic variance of the male trait, G, or the genetic cor-

relation between the male and female trait, rg, increased (Fig. 4).

Not surprisingly, because genetic drift depends on effective pop-

ulation size, sexual isolation by drift decreased with increasing

effective population size for all parameter combinations. As a

result, at large population sizes the effect of inheritance parame-

ters was reduced because relatively few population pairs evolved

substantial isolation.

Evolution of sexual isolation also depends on the strength

of both natural and sexual selection on the male trait. Stronger

natural selection on the male trait (lower values of ω2) reduces

the evolution of sexual isolation by reducing the rate of drift along

the line of equilibrium (Fig. 5A), as predicted by equation (3). In

contrast, stronger sexual selection (lower values of ν2) increases

the evolution of sexual isolation by drift (Fig. 5B) for two rea-

sons. First, stronger sexual selection increases the variance among

populations caused by drift along the line of equilibrium, as pre-

dicted by equation (3). Second, stronger sexual selection reduces

the probability of mating between two populations, equation (4),

given a particular difference in their male trait means.

These effects of inheritance, selection, and population size

on the evolution of sexual isolation are shown in greater detail

5 8 8 EVOLUTION MARCH 2009
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Figure 4. Effect of inheritance and population size on the evolu-

tion of sexual isolation. The proportion of simulated pairs of pop-

ulations with substantial isolation (JI > 1.6) is shown as a function

of effective populations size (Ne) for different values of additive

genetic variance of the male trait (G) and genetic correlation be-

tween the male trait and female preference (γ). The results are

for 10,000 replicate pairs after 10,000 generations of evolution by

drift. Values of other parameters: H = G, γ2 = 50, ν2 = 5.

in Table 1. Note that substantial sexual isolation can evolve by

drift even in very large populations in only 1000 generations. In

an especially favorable case (rg = 0.9, ω2 = 100, ν2 = 5, α =
0.05), 11% of population pairs of effective size 1000 evolved

substantial isolation after only 1000 generations, and after 10,000

generations 64% had achieved substantial isolation. Such very

rapid evolution is exceptional, however, and in general substantial

isolation commonly evolves only after 5000 or more generations.

We compared the simulation results (Table 1) to results using

both a diffusion approximation and a PDF (Supporting Table S1

and S2, Supporting Appendix S1). All three methods yielded very

similar results for realistic parameter values, indicating that the

Figure 5. Effects of population size and selection on the evolution of sexual isolation. The proportion of simulated pairs of populations

with substantial isolation (JI > 1.6) is shown as a function of effective populations size (Ne) for (A) different strengths of natural selection

on the male trait (ω2; larger values indicate weaker selection) and (B) different strengths of sexual selection on the male trait (ν2; larger

values indicate weaker selection). The results are for 10,000 replicate pairs after 10,000 generations of evolution by drift. Other parameter

values as in Figure 2.

simplifying assumptions used to derive equations (3) and (6) are

good approximations.

In summary, using all three methods, the incidence of sexual

isolation increased with time, with additive genetic variance in the

male trait and female preference, with genetic correlation between

the traits, and with strength of female preference. Evolution of

sexual isolation decreased with stronger natural selection on the

male trait and with larger effective population size.

Discussion
TEMPO AND PATTERN IN THE EVOLUTION OF

SEXUAL ISOLATION

The novel contribution of this article is to describe the time course

for the evolution of sexual isolation—not just the evolution of sex-

ually selected traits under assumptions of quantitative inheritance.

Our simulations indicate that sexual isolation is promoted by drift,

even in populations of appreciable size. Instances of substantial

isolation can evolve rapidly, in as few as 1000 generations, under

favorable circumstances (strong genetic correlation between the

sexes, weak natural selection on the male trait, strong female mat-

ing preferences), even when Ne is in the range 1000–5000. Thus,

drift due to finite population size is a mechanism that could ac-

count for the moderate degrees of sexual isolation (JI < 1.0) that

have been observed among allopatric populations in surveys of

Drosophila and plethodontid salamanders (Coyne and Orr 1989,

1997; Tilley et al. 1990; Arnold et al. 1996).

Our simulations also suggest that the evolutionary history

of sexual isolation is likely to be one in which isolation waxes

and wanes. As a pair of populations evolves in allopatry, periods

of divergence in male ornaments may alternate with periods of

convergence, resulting in fluctuations in the degree of sexual iso-

lation (Fig. 2). Of course, because the average trajectory across

a large sample of population pairs shows a monotonic increase

EVOLUTION MARCH 2009 5 8 9



JOSEF C. UYEDA ET AL.

Table 1. The percentage of replicate population pairs evolving substantial isolation by drift as a function of population size, inheritance,

and selection in simulations of Lande’s (1981) model. The proportion of replicate pairs of populations with substantial isolation (JI>1.6)

shown in each cell represent the summary of 10,000 pairs of replicate populations after 1000 or 10,000 generations of evolution See text

for explanation of parameters and justification for choices of parameter values.

After 1000 generations After 10,000 generations

G=H=0.2 G=H=0.6 G=H=0.2 G=H=0.6

Ne Ne Ne Ne

rg ω2 ν2 α 5000 1000 500 5000 1000 500 5000 1000 500 5000 1000 500

0.6 25 20 0.8 0 0 0 0 0 0 0 0 0 0 0 0
0.6 50 20 0.4 0 0 0 0 0 0 0 0 0.58 0 2.26 9.28
0.6 25 10 0.4 0 0 0 0 0 0.01 0 0.49 3.45 0.01 8.39 17
0.6 100 20 0.2 0 0 0 0 0 0.01 0 0.22 3.28 0.01 8.84 21.6
0.6 50 10 0.2 0 0 0 0 0 0.48 0 2.55 11.7 0.36 20.2 34.6
0.6 25 5 0.2 0 0 0.02 0 0.2 2.6 0.01 9.37 22.9 3.2 32.3 45
0.6 100 10 0.1 0 0 0 0 0.02 1.34 0 5.79 17.4 1.71 26.9 43.6
0.6 50 5 0.1 0 0 0.08 0 0.67 5.94 0.11 14.8 30.2 6.52 41.2 54.7
0.6 100 5 0.05 0 0 0.15 0 1.49 8.35 0.34 19.3 35.2 9.7 44.6 58.7
0.7 25 20 0.8 0 0 0 0 0 0 0 0 0 0 0 0
0.7 50 20 0.4 0 0 0 0 0 0 0 0 0.58 0 2.26 9.2
0.7 25 10 0.4 0 0 0 0 0 0.01 0 0.47 3.8 0.01 9.19 16.8
0.7 100 20 0.2 0 0 0 0 0 0 0 0.55 4.41 0.01 11.3 25.1
0.7 50 10 0.2 0 0 0 0 0 0.64 0 3.75 13.7 0.81 23.6 37.8
0.7 25 5 0.2 0 0 0.01 0 0.37 4.21 0.08 11.4 26.6 4.33 35.4 45.5
0.7 100 10 0.1 0 0 0 0 0.23 2.26 0.01 9.09 22.7 3.17 33.1 48.8
0.7 50 5 0.1 0 0 0.16 0 1.9 8.88 0.39 19.6 35.9 9.66 45.7 58.7
0.7 100 5 0.05 0 0.01 0.44 0 3.21 13.1 0.85 25.2 40.7 13.7 51.4 64
0.9 25 20 0.8 0 0 0 0 0 0 0 0 0 0 0 0
0.9 50 20 0.4 0 0 0 0 0 0 0 0 0.16 0 0.97 5.84
0.9 25 10 0.4 0 0 0 0 0 0 0 0.08 1.78 0 4.84 14.6
0.9 100 20 0.2 0 0 0 0 0 0 0 0.33 4.42 0.07 11.3 26.1
0.9 50 10 0.2 0 0 0 0 0 0.54 0 3.86 14.6 0.9 24.5 38.8
0.9 25 5 0.2 0 0 0.02 0 0.37 3.96 0.06 11.8 26.9 5 35 45.9
0.9 100 10 0.1 0 0 0 0 0.47 4.24 0.12 15 30.4 6.75 41.3 56.5
0.9 50 5 0.1 0 0 0.38 0 4.41 14.4 1.77 27.6 44.6 16.5 54 64.9
0.9 100 5 0.05 0 0.09 1.79 0.07 11.4 26.2 6.71 41.4 55.7 29.5 63.6 73.6

in isolation (Fig. 3), some individual trajectories may likewise be

characterized by ever-increasing isolation. Waxing and waning

of isolation is especially pronounced in our model because drift

dominates evolutionary dynamics once populations reach the line

of equilibrium. Even in models with more selective constraint,

however, finite population size should result in temporary rever-

sals in evolutionary trajectory and hence in some degree of waxing

and waning.

The prospect of stochasticity in the evolution of reproduc-

tive isolation has often been ignored or dismissed in discussions

of speciation. Coyne and Orr (2004), for example, argued that

sexual isolation would evolve so slowly by drift that this route to

speciation can be disregarded. If populations maintain effective

sizes in excess of 5000, the role of drift may indeed be insubstan-

tial (Table 1). In vertebrates and many other groups in which Ne

is commonly in the range 500–1000, stochasticity may however

play a large role in the divergence of mating preferences and hence

in the evolution of isolation and speciation. In such groups, finite

population size might promote both the rapid evolution of isola-

tion and repeated evolutionary reversals that we have observed in

our simulations. Furthermore, these conclusions do not require a

strong assumption about the selective neutrality of preferences.

While we argue that drift that will increase the potential for

sexual isolation, an earlier simulation study of Lande’s (1981)

model arrived at the opposite conclusion (Nichols and Butlin

1989). The authors were concerned with the unstable runaway

case and argued on the basis of their simulations that genetic vari-

ance and covariance will not be maintained in finite populations

5 9 0 EVOLUTION MARCH 2009



DRIFT PROMOTES SPECIATION BY SEXUAL SELECTION

and so will limit divergence. They argued that this loss of varia-

tion will be exacerbated by a decrease in effective population size

as the male trait distribution diverges from the viability optimum,

causing fewer males to obtain the majority of the matings. Unfor-

tunately, their simulations were apparently limited to very small

population sizes and strong selection parameters (ω2 = υ2 ≈ σ2 =
τ2), and on that basis it is not surprising that little genetic variance

and covariance was maintained in their simulation runs. In other

words, Nichols and Butlin (1989) explored a small region of the

parameter space with limited biological relevance (unstable case,

very small population size, strong selection parameters), and con-

sequently their results have little bearing on our conclusions. In

another study that explored the consequences of finite population

size, Wu (1985) simulated evolution by sexual selection in a ge-

netic system with two haploid loci, each with multiple alleles.

Although selection and population size were parameterized in a

way that makes comparisons to natural populations or quantitative

genetic models difficult, Wu (1985) found that the Fisher–Lande

process worked synergistically to accelerate the evolution of sex-

ual isolation, a result in line with ours.

THE ASSUMPTION OF SELECTIVELY NEUTRAL

PREFERENCES

The assumption of the present model that female mating pref-

erences are selectively neutral may seem untenable to readers

familiar with the last 25 years of work on quantitative genetic

models of sexual selection. Since 1981, nearly all such models

have allowed for stabilizing or other modes of selection on prefer-

ences, that is direct costs (Mead and Arnold 2004). The inclusion

of such costs can cause Lande’s (1981) line of equilibrium to col-

lapse to a single, stable point of equilibrium (e.g., Pomiankowski

et al. 1991). Because this collapse seems to erase the possibility of

diversification of male ornaments and speciation, model builders

have focused on alternative scenarios (such as cubic selection on

preference or plateau selection on the male trait) that promote

diversification by creating multiple points or stable limit cycles

(reviewed in Mead and Arnold 2004). While exploring these sce-

narios, focus has been restricted to the deterministic behavior

of the models (i.e., only populations of infinite size have been

explored). Our exploration of stochastic behavior suggests that

dismissal of stable equilibrium points, arising from direct costs to

preferences, has been too hasty.

Adding a cost to preferences may restrict—but does not

eliminate—the possibility of ornament diversification and specia-

tion. Obviously a continuum exists between no costs and substan-

tial costs to mating preferences, and many actual mating systems

probably lie along this continuum. By including finite population

size in models, one can readily show that along this continuum,

the equilibrium changes from a line to a linear cloud to a point.

This equilibrium continuum is shown in Figure 6. In a model

Figure 6. The effect of preference costs and population size on

evolutionary equilibria. Adding direct costs to female preference

results in a single equilibrium point in a population of infinite size

(e.g., Pomiankowski and Iwasa 1993). We conducted simulations

using the dynamic equations of Pomiankowski and Iwasa (1993,

eq. 4) but allowed finite population size. This stochastic version

of their model, which we will describe elsewhere, yields linear

elliptical clouds at equilibrium. The size of the cloud depends on

the magnitude of the preference costs and population size. Sim-

ulations were run for 10,000 generations for 2000 replicate pop-

ulations with Ne = 1,000. The ellipses shown here are the 95%

confidence ellipses at equilibrium. The scales on both axes are in

units of within-population phenotypic standard deviation. Param-

eter values for Pomiankowski and Iwasa’s preference cost (B) for

each ellipse are: (A) b = 0.1 (B) b = 0.01 (C) b = 0.0025 (D) b =
0.001 (E) b = 0 (i.e., no preference cost). Other parameter values

are: γ = 0.7, G = H = 0.6, ω2 = 50 and ν2 = 5.

with selection on preferences in a finite population, a balance

is achieved between drift, which tends to disperse populations

away from the equilibrium point that characterizes populations

of infinite size, and selection, which drives populations towards

that point. The resulting equilibrium cloud is large if populations

are small and/or the cost of preferences is weak. As shown in

Figure 6D, the equilibrium cloud can be of substantial size even

in large populations if the cost of preferences is sufficiently small.

Notice that in this particular case, mean ornamental values of pop-

ulations may differ by nearly six phenotypic standard deviations.

Thus, even when selection acts on preferences, both substantial

ornament diversification and sexual isolation can occur.

CLOUDS RATHER THAN POINTS OF STABLE

EQUILIBRIUM

Our exploration of the stochastic behavior of Lande’s (1981)

model highlights the need to explore stochastic versions of other

models of sexual selection. A trend in the theoretical literature

since 1981 has been to focus on equilibrium conditions in popu-

lations of infinite size, sometimes dropping genetic covariances
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from the model on the grounds that they do not affect the equilib-

rium (e.g., Kokko 2005). Our analysis of Lande’s (1981) model

highlights the importance of both inheritance and selection during

stochastic evolution. In particular, the size and configuration of

the equilibrium cloud is affected both by population size and the

genetic covariance between ornament and preference, equation

(3). Because the Fisher–Lande process that relies on the genetic

correlation between the sexes is embedded in virtually all of the 30

models derived from Lande (1981), stochastic versions of those

models probably possess equilibrium clouds with similar proper-

ties. The implication of this result, which needs to be confirmed by

more theoretical work, is that the last couple of decades of mod-

eling have underestimated the potential for speciation by sexual

selection.

BRIDGING FROM SEXUAL SELECTION TO SEXUAL

ISOLATION AND SPECIATION

Our results establish the feasibility of explicitly modeling the

evolution of sexual isolation and hence the path to speciation. An

explicit connection to isolation and speciation is missing in most

quantitative genetic models of sexual selection because modeling

ends with a specification of ornament and preference evolution.

The essential, often missing step is to extend existing models so

that they treat the sampling properties of pairs of diverging popu-

lations. A second, missing step is to evaluate the degree of sexual

isolation that is achieved by any given amount of divergence in

ornaments and preferences. We used a particular model of sex-

ual isolation (Arnold et al. 1996) to accomplish this second step,

although sometimes it can be achieved directly from the model

(Gavrilets and Hayashi 2005). In any case, specifying the degree

of isolation in the currency of one of the standard measures of

sexual isolation (e.g., JI) is especially useful. By using one of

the standard currencies, the results of the model can be related

directly to the extensive empirical literature on sexual isolation.

One problem in making a connection between sexual selec-

tion models and empirical measures of sexual isolation is the ne-

cessity of specifying a particular functional form for mating pref-

erences. In the present case, we used just one (Gaussian-shaped,

absolute) of many possible forms for mating preferences. An im-

portant goal for the future will be to establish whether conclusions

about the evolution of sexual isolation depend tightly on assump-

tions about mode of preferences. Although general conclusions

about the evolution of ornaments do not seem much affected by

alternative assumptions about preference functions (Lande 1981),

they might affect the rate at which isolation evolves.
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Appendix
Probability density function for πAB

Probability density function for πAB. Let z̄ Abe the mean male

trait value from population A and z̄B be the mean male trait

value from population B. Approximating evolutionary divergence

from an ancestor as a Gaussian diffusion process, the male trait

means at generation t are normally distributed with mean of zero

and a time-dependent variance equal to the first element in the

dispersion matrix, equation (3),

Dz(t) = H (1 − r2
g )t

Ne
(
α + 1 − B/G

)2 .

Consequently, Z = z̄ A − z̄B is normally distributed with a

mean of zero and a variance approximately equal to 2Dz(t). If

we assume that the differences between male and female trait

values within a population are negligible compared to between

populations (dAA = dBB = 0), then equation (4) becomes,

πAA = cAA

πBB = cBB

πBA = cBA exp(−Z2/(2�2))

πAB = cAB exp(−Z2/(2�2)).

Thus, we can derive a formula for the cumulative distribution

function of πAB (and consequently of πBAas well) by solving for

the cumulative distribution function,

FπAB (x) = P[exp(−Z2/(2�2)) ≤ x] = P

[
Z ≥

√
−2�2 ln(x)

]
.

Substituting the cumulative distribution function for Z

yields,

FπAB (x) = 1 − FZ

[√
−2�2 ln(x)

]
,

where FZ is the cumulative distribution function of the random

variable Z. Taking the derivative of both sides with respect to x

and substituting in the probability density function (PDF) of Z

yields the PDF for πAB at generation t,

fπAB (x) = �2x�2/2Dz (t)

x
√−2πDz(t)�2 ln(x)

,

for 0 ≤ x ≤ 1 , and 0 elsewhere.

The expected value of πAB at generation t can be determined

by integrating x fπAB (x) over x,

E[πAB] =
1∫

0

�2x�2/2Dz (t)√−2πDz(t)�2 ln(x)
dx .

Note that this probability of inter-population mating depends

on two variances, Dz(t) and �2. The first variance represents the

dispersion among replicate populations in mean male trait value

at generation t. The second variance is �2 = τ2 + υ2 + σ2, a

constant (Arnold et al. 1996). Assuming that πAB = πBA and

πAA = πBB = 1, then the expected value of JI at generation t is

E (JI (t)) = 2(1 − E (πAB(t))).
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