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Abstract
Despite the many triumphs of comparative biology during the past few decades, the field has remained
strangely divorced from evolutionary genetics. In particular, comparative methods have failed to
incorporate multivariate process models of microevolution that include genetic constraint in the form
of the G matrix. Here we explore the insights that might be gained by such an analysis. A neutral
model of evolution by genetic drift that depends on effective population size and the G matrix predicts
a probability distribution for divergence of population trait means on a phylogeny. Use of a maximum
likelihood (ML) framework then allows us to compare independent direct estimates of G with the
ML estimates based on the observed pattern of trait divergence among taxa. We assess the departure
from neutrality, and thus the role of different types of selection and other forces, in a stepwise
hypothesis-testing procedure based on parameters for the size, shape, and orientation of G. We
illustrate our approach with a test case of data on vertebral number evolution in garter snakes.
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A large literature on the comparative analysis of evolving traits has blossomed during the past
25 years (Felsenstein 1985; Harvey and Pagel 1991; Lynch 1991; Martins and Garland 1991;
Martins 1994, 2000; Rohlf 2001; Steppan 2004; Carvalho et al. 2005). Interest in tracing trait
evolution on independently estimated phylogenies has been responsible for putting a new face
on comparative biology. New methodologies have allowed investigators to assay statistical
associations between trait values and putative selective pressures (e.g., Darst et al. 2005; Ord
and Martins 2006; Strmberg 2006) and to test alternative models of evolutionary process
(Hansen 1997; Butler and King 2004). Despite success on these and other fronts, the new
comparative biology has been strangely divorced from evolutionary genetics. Process models
have been adopted from evolutionary genetics to provide the substructure for statistical
inference (Martins and Hansen 1997), but estimates of genetic parameters usually play no role
in comparative biology. The divorce between comparative biology and evolutionary genetics
is especially vivid in the case of continuously distributed phenotypic traits. For these kinds of
traits, which are often polygenic, quantitative genetic models promise deep understanding of
adaptive radiations (Hansen and Martins 1996; Arnold et al. 2001; Bégin and Roff 2004).
Furthermore, relevant parameters of inheritance and selection have been estimated in many
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natural populations (Mousseau and Roff 1987; Kingsolver et al. 2001; Steppan et al. 2002).
Despite the abundance of relevant models and parameter estimates, evolutionary genetics has
had virtually no impact on comparative biology. The separation undoubtedly has multiple
causes, but a primary one is the lack of comparative methods that integrate information on
inheritance and selection. Consider the G matrix, which currently plays no role in virtually any
comparative method (below we note the few exceptions). This matrix of additive genetic
variances and covariances is central to all mathematical models for the multivariate evolution
of phenotypic traits (Lande 1979; Lande and Arnold 1983; Blows 2007). What insight would
be gained by incorporating estimates of the G matrix and process models based on its
microevolutionary role into comparative methods?

One of the major goals of comparative biology is to identify the nature and role of selective
forces that have shaped adaptive radiations and evolutionary diversification. To accomplish
this identification, we must first specify a neutral model of evolution in the absence of selection.
The neutral model provides a benchmark against which actual data on trait divergence can be
compared. A number of methods of this kind have been proposed for the univariate (single-
trait) case (Lande 1977; Charlesworth 1984; Turelli et al. 1988; Lynch 1990; Lynch et al.
1999; Estes and Arnold 2007). These approaches assess the statistical significance of
departures from neutral rates of evolution. Enough empirical tests have been performed to
provide general conclusions: on short timescales, rates are typically faster than expected under
neutrality (Merilä and Crnokrak 2001; McKay and Latta 2002), but on long timescales, they
are usually slower—often much slower (Lynch 1990; Hansen and Houle 2004; Estes and
Arnold 2007). We can with confidence reject the general hypothesis that rates of trait evolution
at all timescales conform to neutral expectations. Consequently, the point of these tests is not
to continue to beat the dead horse of neutrality. Instead, neutral models allow us to diagnose
specific characteristics of evolutionary forces operating on a set of taxa. For instance, rates
significantly slower than neutral indicate the presence of a restraining force (e.g., stabilizing
selection), while rates faster than neutral indicate a diversifying force (e.g., directional
selection).

Our goal in this article is to extend hypothesis testing in ways that increase the discriminatory
power of comparative analysis to inform us about underlying evolutionary processes. In doing
so, we begin with a process model for trait evolution built from evolutionary genetics theory
that specifically includes the G matrix. Because the G matrix includes variance terms for single
traits as well as pairwise covariance terms relating multiple traits, it is by nature multivariate.
It describes the standing crop of genetic variation in a way that is relevant to evolution by
selection and drift in multivariate space (Lande 1979; Lande and Arnold 1983).

A multivariate approach should allow us to separate the roles of various types of genetic
constraints and to accept or reject the neutral model. Furthermore, we should be able to identify
and test hypotheses that have no analogue in univariate methods. For example, although
univariate models compare the rate of evolution on single traits with neutral expectations, they
do not test whether the overall multivariate pattern of evolution is consistent with neutral
expectations. As Lande (1979) pointed out, neutral divergence of multivariate population
means should be proportional to the G matrix. Although a few authors have tested this
prediction (e.g., Lofsvold 1988; Blows and Higgie 2003; Bégin and Roff 2004; McGuigan et
al. 2005; Hunt 2007), no multivariate methodology has been proposed that takes account of
phylogeny and that separates the multiple hypotheses that are testable in this context.

We develop our analysis in a maximum likelihood (ML) framework. A primary advantage of
such a framework is that it allows parameters to be estimated sequentially and their contribution
to the fit of the model to be assessed at each step with likelihood ratio tests (Edwards 1992;
Baum and Donoghue 2001). In our approach, we use ML to estimate parameters describing
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the G matrix from data on trait means in contemporary populations with a known phylogeny,
based on a neutral model of evolution. ML estimates of parameter values can be statistically
compared against independent direct estimates. If the data reflect the role of selection in trait
divergence, the ML estimate of parameter values from a neutral model will likely differ from
the direct estimate. We consider G in terms of parameters describing its size, shape, and
orientation. Rejection of the neutral model on the basis of these different parameters leads to
different conclusions about the evolutionary forces responsible for the pattern of trait
divergence among taxa.

As a test case, we use the evolution of vertebral numbers in garter snakes (Thamnophis spp.)
to illustrate our approach. Our data are typical in the sense that they include two trait means
(body and tail vertebral counts) scored in multiple contemporary species and populations. A
phylogeny has been estimated for these taxa from independent molecular data. Furthermore,
G matrices have been estimated for these two traits in multiple populations of garter snakes
from parent-offspring data, effective population size has been estimated from microsatellite
data, and multivariate selection has been studied in two different populations. By comparing
ML estimates of G from the pattern of divergence based on a neutral model with direct estimates
of G from parent-offspring data, we infer the role of selection in this radiation. In the course
of rejecting the neutral model, we show that stabilizing selection has been a restraining force
in the garter snake radiation. We also show that evolution may have proceeded along a selective
line of least resistance rather than along a genetic line of least resistance.

Theoretical Framework
Divergence under the Neutral Model

Let z ̄0 represent the mean value of a normally distributed quantitative trait in a population at
initial time t = 0. If the population evolves by random drift alone, the probability distribution
of z ̄ after one generation is normal, with mean z ̄0 and variance G/Ne, where G is the additive
genetic variance for the trait and Ne is the effective population size (table 1). After t generations
of random genetic drift, the expected mean remains z ̄0, and the variance is given by

(1)

(Lande 1976). If genetic variance fluctuates over time, the above equation holds for Ḡ, the time
average of G, as a measure of genetic variance (Lande 1979). If Ne fluctuates over time, the
above equation holds for the harmonic average of the effective population sizes at each
generation i,

(2)

Now suppose we measure a set of m normally distributed quantitative traits, such that z ̄ is a
column vector of length m of population means for each trait. Genetic variation for this set of
traits can be represented by the G matrix, a symmetrical m-by-m matrix with additive genetic
variance for each trait on the diagonal and additive genetic covariances for each pair of traits
off the diagonal (Lande 1979). As in the univariate case, the probability distribution for the
vector of population trait means after t generations of random drift has a mean vector equal to
the mean vector at time 0, z ̄0. This distribution is multivariate normal, with variances and
covariances given by the m-by-m matrix
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(3)

assuming that fluctuations in G and Ne over time are un-correlated with each other (Lande
1979). In other words, after t generations, a set of replicate populations evolving independently
from a common ancestral population with trait mean z ̄0 is expected to be a sample from a
multivariate normal probability distribution with mean vector z ̄0 and variance/covariance
matrix D(t). This probability distribution is given by the equation

(4)

(Lande 1979). The matrix D(t) thus describes the expected pattern of divergence at generation
t among independently evolving populations (Blows and Higgie 2003; fig. 1).

Schluter (1996) predicted that the leading eigenvector of this divergence matrix D, representing
the major direction of change among species means, would be biased toward the leading
eigenvector, or principal component, of the G matrix. This prediction is based on the result
that in the early stages of adaptive radiation, even in the face of selection, populations evolving
toward a single fixed optimum do not necessarily evolve in the direction of greatest fitness
increase on the adaptive landscape (Lande 1979, 1980b). Instead, such populations evolve in
a direction close to the leading eigenvector of G, what Schluter (1996) called the genetic line
of least resistance, which represents the axis of greatest genetic variation, gmax. In a purely
neutral model, the major axis of divergence should align exactly with gmax (fig. 1). The other
axes of variation in G also influence the direction of evolution, however, so that a multivariate
distribution provides a more complete prediction of the pattern of divergence. Thus, a complete
multivariate version of Schluter’s conjecture would involve comparison of all the axes of
variation of the two matrices G and D, not just a comparison of their leading eigenvectors,
gmax and dmax. One could accomplish this simply by testing whether G and D are proportional
to each other (e.g., Blows and Higgie 2003). However, proportionality of matrices reflects
similarity in two respects: ratio of eigenvalues (which we call shape) and orientation of
eigenvectors (Flury 1988). Different inferences result from separate comparisons of these two
aspects of matrix proportionality, hence the stepwise approach described below.

Empirical and simulation research suggests that different aspects of G evolve in different ways
and in response to multiple forces (Phillips et al. 2001; Steppan et al. 2002; Jones et al. 2003,
2004, 2007). Consequently, it is useful to reparameterize G into what can be considered size,
shape, and orientation parameters, as suggested by Jones et al. (2003). A symmetrical m-by-
m G matrix contains m variance terms and (m2 − m)/2 covariance terms, representing a total
of (m2 − m)/2 parameters. First, let λ1, λ2, and so forth, represent the eigenvalues, and let g1,
g2, and so forth, represent the corresponding eigenvectors of G. Because G is a variance/
covariance matrix, it is expected to be positive definite and therefore to have all positive real
eigenvalues and orthogonal eigenvectors. Each G matrix can then be decomposed into a single
size parameter

(5a)

a vector ε containing m − 1 shape parameters

(5b)
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and a vector ϕ containing (m2 − m)/2 orientation parameters ϕi. The orientation parameters
describe the angles between the eigenvectors and the trait axes, and their formulas depend on
m. Note that we calculate εi differently from Jones et al. (2003) in order to facilitate estimation
procedures and handle cases in which m > 2. Because G is a positive definite matrix, the size
parameter Σ also equals the trace of G, or the sum of the genetic variances. In the case of a 2-
by-2 G matrix, there is conveniently only one parameter each for size, shape, and orientation.
In this two-trait case, we can represent the parameters simply as scalars (Σ, ε, and ϕ), with ϕ
representing the angle between the leading eigenvector (gmax) and the axis of the first trait
(Jones et al. 2003). A 2-by-2 G matrix is then parameterized as

(6)

G is expected to change over time by neutral genetic drift in a population of finite size in the
absence of natural selection. If the variance lost by fixation of alleles is replenished by a
constant supply of new mutations, eventually G reaches a stable equilibrium of mutation-drift
balance (Lande 1980a; Lynch and Hill 1986). This equilibrium is given by Ḡ = 2Ne M in
diploid organisms, where M is the variance/covariance matrix of new mutational variation
entering the population each generation (Lande 1979). If we assume that M remains constant
over time, perhaps as a result of the genetic architecture of loci underlying the traits, and that
G is in mutation-drift equilibrium within each taxon, then the divergence matrix is

(7)

In practice, both G and Ne are easier to measure in natural populations than M. If we assume
mutation-drift equilibrium in a neutral model, however, we can estimate M based on these
other measures. We can also reparameterize M, as we did with G. Because Ḡ is related to M
by a scalar multiple, the shape and orientation parameters ε and ϕ of these two matrices are
identical. The size parameters of M and G are related by

(8)

where ΣM and ΣG are, respectively, the traces of M and G.

The Influence of Phylogeny
The trait divergence that we observe among contemporary populations is a consequence of
history as well as evolutionary process. The divergence among a set of n taxa can be modeled
as a sample from a multivariate normal distribution with the m-by-m variance/covariance
matrix D(t) only if the taxa have evolved independently, as on a star phylogeny, with no
covariance as a result of shared ancestry (as in fig. 1). This assumption of independence,
however, is unrealistic in most natural situations. The effects of phylogenetic relatedness (i.e.,
covariance) can be removed before analysis in various ways (Felsenstein 1985;Schluter
1996;Diniz-Filho et al. 1998). Here we follow the alternative approach of Martins (1995) and
include phylogenetic information directly in the calculation of the expected variance/
covariance structure among taxa. Our goal then is to replace the divergence matrix D(t) with
a divergence matrix that incorporates the shared history of phylogeny. We call this phylogenetic
divergence matrix A.

In the case of neutral genetic drift, the variance of the probability distribution for the expected
trait mean in a single taxon after t generations is given by D(t) or D(t) for single or multiple
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traits, respectively. Note that this variance increases linearly with time in the neutral model
(eqq. [1], [3]). Now suppose that this single taxon splits at time t into two daughter taxa that
evolve independently after the split. The variance of the probability distribution for each
taxon’s trait mean continues to increase linearly after the split, but the means of these daughter
taxa covary as a result of shared ancestry. This trait covariance remains constant after the split,
and it is given simply by the variance at the time of their divergence, D(t) or D(t) (Hansen and
Martins 1996). In other words, the variance of the probability distribution predicting the trait
mean of the common ancestor lives on as the covariance between the daughter taxa. Note that
trait correlation between the two taxa, in contrast, decreases linearly with time after
cladogenesis because the variance for each daughter taxon continues to increase while the
covariance between them remains constant (Martins 1995; fig. 2).

Keeping in mind this linear variance/covariance structure among related taxa, we now represent
a phylogeny as a matrix of shared ancestry (Martins 1995). A phylogeny of n taxa with branch
lengths can be represented by a symmetrical n-by-n matrix, which we shall call T. In this matrix,
each diagonal element tii is the elapsed time in generations from the root of the tree to the extant
taxon i, and each off-diagonal element tij is the time from the root to the most recent common
ancestor of taxa i and j. Thus, the off-diagonal elements of T represent the elapsed time of
shared ancestry for taxa i and j. Note that this formulation of a phylogeny easily accommodates
both polytomies and unequal branch lengths. The latter point implies several areas of flexibility
in the model: the taxa at the tips do not necessarily need to be contemporary, the phylogeny
can be estimated from molecular data without assuming a molecular clock, and the conversion
rate from absolute time to generations does not need to be equal across all branches. Now, for
a single trait evolving by drift alone, the variance/covariance of the probability distribution of
trait means at the tips of the phylogeny is given by the n-by-n matrix

(9)

assuming in the first case that fluctuations in G and Ne are uncorrelated with each other and
that their means (arithmetic and harmonic, respectively) are equal across all branches of the
phylogeny and assuming in the second case that populations are in mutation-drift equilibrium
with constant mutational variance M. Each ijth element of A in equation (9) is therefore the
variance term D(tij) from equation (1).

In the case of m traits, each element of A expands into an m-by-m block given by D(tij) from
equation (3). Where i = j, this block gives the variance/covariance among expected trait means
for taxon i. Where i ≠ j, this block gives the expected covariance among taxon means, that is,
between taxon i and taxon j, for all traits (Hansen and Martins 1996). As described above, this
covariance is equal to the variance/covariance for the most recent common ancestor of taxa i
and j. For multiple traits, therefore, the matrix A expands into an (m × n )-by-(m × n) matrix
of variance/covariance across all traits and across all taxa, incorporating both shared ancestry
and the genetic covariance of traits (for further explanation, see the appendix in the online
edition of the American Naturalist).

When evolution is by drift alone, the expected trait values for each taxon are equal to the trait
means at the root of the phylogeny, z ̄0. Let μ be a vector of length m × n that is an n-fold
concatenation of z ̄0. Thus, given a phylogeny T, ancestral trait means z ̄0, and parameters
governing the drift process (Ḡ and N̄e), the predicted probability distribution of population trait
means is a multivariate normal distribution with mean vector μ and variance/covariance matrix
A. Now let ζ be a vector of length m × n containing measured data—actual population means
for each trait in each taxon. This vector ζ is a sample from this multivariate normal distribution.
Thus, under the neutral model, the probability of producing the data ζ is given by
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(10)

Hypothesis Testing
ML Estimation

The foregoing specification of the outcome of evolution as a probability distribution enables
us to use ML to assess the fit of the neutral model. Note that the specification of A and μ
depends on the evolutionary model and a set of parameters θ. Consequently, the multivariate
probability distribution in equation (10) can be transformed into a likelihood framework
(Edwards 1992) in which the likelihood of a set of parameter values is

(11)

By taking the data ζ as given, we now use ML techniques to estimate parameter values in a
given model that best explain the data. In the neutral model described above, these parameter
values include N̄e and the size, shape, and orientation parameters of the G matrix (Σ, ε, and
ϕ, respectively). By comparing parameter estimates to independent empirical values, we can
use ML to diagnose which of these parameters is responsible for a poor fit of the data to the
statistical prediction given by equation (10). This identification of parameters will in turn
enable us to characterize the evolutionary forces, aside from population size and genetic
constraint, that have shaped the evolution of the traits. We have implemented the hypothesis-
testing procedure as publicly available software called MIPoD (Hohenlohe 2007).

In general, we have two ways to estimate parameter values that maximize the likelihood of the
data. One approach is to differentiate the likelihood expression, equation (11), with respect to
the parameter of interest and so produce an analytical solution for the peak of the likelihood
surface. When this is not practical, we must use numerical techniques to search for parameter
values that maximize the likelihood expression. Below we use both techniques. As is
customary, we deal mostly with the natural logarithm of the likelihood function, called log
likelihood or ln L, which has the same location of maxima as does the untransformed equation
(11).

We use differentiation to obtain a ML estimate for a compound parameter involving the overall
size of the G matrix and effective population size. Because both Σ and N̄e can be easily factored
out of A, the log-likelihood func- tion is differentiable with respect to these parameters and
can be solved explicitly for the ML estimate of ΣG/N̄e(=2 ΣM for the mutation-drift equilibrium
model). Unless independent information about either of these parameters is available, one
cannot calculate separate ML estimates for total genetic variance and effective population size.
This confounding of parameters is why many previous models contain a single Brownian
motion parameter that implicitly combines total genetic variance and Ne (e.g., Hansen 1997;
Butler and King 2004).

We also use differentiation to obtain a ML estimate of μ, the expected value of population trait
means evolving along the observed phylogeny according to the neutral model. The ML estimate
for μ in the neutral model is an n-fold concatenation of the population trait means at the root
of the phylogeny, z ̄0. Assuming that these ancestral trait means will be unknown in most cases,
we first produce an estimate for the ancestral trait means, ẑ0. This ẑ0 vector can be calculated
directly by solving the set of m linear equations

(12a)

where S is an m-by-m matrix with elements
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(12b)

where  is the pqth element of the inverse matrix A−1 and c is a column vector with elements

(12c)

Note that because both Σ and N̄e can be factored out of A, and therefore out of A−1 as well,
they can also be factored out of both sides of equation (12a). Therefore, the ML solution for
μ does not depend on either Σ or N̄e, and it can be calculated independent of these parameters.
In other words, the ML estimate for the expected trait means depends not on the overall rate
of genetic drift but only on the shape and orientation of G and the structure of the phylogeny.

The solution for the shape and orientation parameters of the G matrix, ε and ϕ, cannot easily
be found by using differentiation of the log-likelihood expression, so numerical estimation
techniques must be employed. Below we use the Newton-Raphson method to find maxima on
the likelihood surface (Edwards 1992). For each parameter estimate, one can also calculate
approximate, marginal 95% confidence limits by finding the lower and higher values
representing 1.92 log-likelihood units below the maximum while holding all other parameter
values constant (Edwards 1992).

Hypothesis-Testing Hierarchy
We now turn to a hypothesis-testing framework that uses these ML estimates of ΣG/N̄e, ε, and
ϕ to detect and diagnose departures from neutrality. The equations above describe expected
outcomes under a neutral model of evolution or, more precisely, under a model of drift-mutation
equilibrium, which can be considered a null model. One could simply produce a ML estimate
of the complete G matrix and compare that to an independent direct estimate (e.g., calculated
from measurements of traits on parents and offspring). However, most data on divergence are
expected to depart from the predictions of the neutral model, so we seek to gain further insight
into the kinds of roles that selection and other factors have played in producing those departures.
We proceed stepwise in a hypothesis-testing hierarchy through the size, shape, and orientation
parameters of G. Corresponding to each of these steps is a particular hypothesis about the
evolutionary forces that have shaped trait divergence. Taken together, the steps in the hierarchy
provide an overall test of the neutral model.

Our stepwise hierarchical approach is similar to the Flury hierarchy that has been used to
compare multiple estimates of G (Phillips and Arnold 1999). Our approach differs from that
of Phillips and Arnold (1999) in that we are comparing a direct estimate of the G matrix to one
predicted from data on divergence using ML. Consequently, the statistics of comparison derive
from the likelihood surface based on the neutral model. Our approach also differs in that our
null hypothesis is an equality of the direct and ML estimates, while Phillips and Arnold
(1999) started from a null hypothesis of G matrices with unrelated structure.

We begin by calculating the likelihood of the independent direct estimates of the G matrix
parameters under the neutral model. Then at each step in the testing hierarchy, we estimate an
additional parameter by ML and use a likelihood ratio test to assess whether the additional
parameter significantly improves the fit of the model to the data. Significant results suggest
specific ways in which evolution has deviated from the neutral prediction, thus providing
information about selection (table 2). Our hierarchical approach allows us to test three basic
hypotheses.
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Size: Total Amount of Divergence
We begin by estimating the compound parameter Σ/by N̄e ML, keeping the other parameters
of G fixed at values of the direct estimate. We then compare the fit of the model for the ML
estimate to that of the direct estimates for G and N̄e by using a likelihood ratio test. This
comparison tests the hypothesis that the total amount of divergence among taxa across all traits
(i.e., the total amount of variance among observed trait means) is consistent with the neutral
expectation (i.e., the variance predicted by a drift model). If we have an independent estimate
of N̄e, we can factor it out of the combined parameter and interpret the results in terms of total
genetic variance Σ. If the ML estimate of Σ differs significantly from the observed value, then
the total amount of divergence among taxa is either more (if Σobs < Σest) or less (if Σobs >
Σest) than expected based on a model of evolution by drift alone. If we observe significantly
more evolution than expected by drift, we can infer that some additional force, such as
diversifying selection, has promoted divergence. Diversifying selection might take the form
of a selective optimum that moves through time, for example, as ecological conditions change.
Alternatively, if we observe significantly less evolution than expected by drift, we can infer
that some restraining force, such as stabilizing selection, has impeded divergence. This test is
the multivariate analogue of a univariate rate test of neutrality that uses the genetic variance
for a single trait in conjunction with estimates of divergence, elapsed time, and effective
population size (e.g., Lynch 1990; Estes and Arnold 2007).

Shape: Relative Amounts of Divergence among Axes of Variation
At the second step, we estimate both Σ and the shape parameter ε and compare the fit of the
model to the previous step by using a likelihood ratio test. This comparison tests the hypothesis
that the relative amount of divergence along each axis of genetic variation is consistent with
the neutral expectation after removing the effects of the total amount of divergence. Under the
neutral model, we expect divergence in each trait to be proportional to its genetic variance and
the covariance structure of divergence among traits to be proportional to genetic covariance.
In other words, we expect D and G to be proportional so that they have the same shape.
Rejecting this hypothesis means that evolution has occurred faster along some axes of variation,
and slower along others, than expected under neutrality. Such disparity among traits could arise
if some traits or combinations of traits experience diversifying selection while others
experience stabilizing selection or if trait combinations experience similar modes of selection
but with different intensities. Whatever the causes of disparity among traits in the amount of
evolution, disparity cannot be explained simply by differences among traits in observed genetic
variance.

Because this step of the testing hierarchy examines differential rates of evolution among axes
of genetic variation, there is no univariate analogue to this test. Separate univariate tests of
neutrality on multiple traits would confound the total amount of evolution with the relative
rates of evolution among traits. In our multivariate approach, the effect of the total amount of
evolution has already been removed in the first step by estimating Σ/N̄e. One could correct for
the total amount of evolution across all traits and then conduct separate univariate tests of
neutrality on the residual data. However, this approach could still miss inferences about the
role of correlational selection because it would ignore the patterns of covariance among traits.
In our multivariate approach, we can make inferences about correlational selection from the
relative rates of evolution along the axes of genetic variation, the eigenvectors of G.

Orientation: Direction of Divergence
In the third step, we estimate all of the G matrix parameters to test the hypothesis that the major
axes of divergence are congruent with the major axes of genetic variation. At this step, we ask
whether the pattern of divergence and the G matrix differ in the orientation of their eigenvectors
(ϕ). This comparison provides a test for Schluter’s (1996) proposition that the major axis of
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divergence should be biased toward the major axis of genetic variation. A rejection of the
neutral model at this stage suggests either that selection has had differential impacts on the
traits that do not conform to the orientation of genetic covariance or that the axes of correlational
selection are not aligned with the axes of genetic variation. Because we are considering the
orientation of axes in multivariate space, there is no univariate analogue to this test. In the case
of two traits, a single scalar parameter ϕ establishing the orientation of gmax completely
describes the orientation of G. The ML estimate of ϕ is calculated from the pattern of divergence
among taxa, correcting for phylogeny under the neutral model as described above. It describes
the orientation of the major axis of divergence, so it represents a phylogenetically corrected
estimate of the orientation of dmax. We refer to this corrected estimate of the major axis of
divergence as . When more than two traits are considered, it is possible to test all (m2 −
m)/2 parameters ϕi that determine the orientation of all eigenvectors of G. Because of the
increase in the number of parameters and the complexity of interpretation, we will address the
situation of more than two traits in more detail in a forthcoming article. Below we consider
only the two-trait case.

MIPoD can also be used to compare the orientation of other matrices besides G to the pattern
of divergence. In particular, if estimates of multivariate selection are available in the form of
approximations to quadratic or Gaussian fitness surfaces (γ or ω matrices, respectively), their
orientation can be compared with that of D (Arnold et al. 2001; Blows et al. 2004). Such a
comparison is most informative when the neutral model has already been rejected on the basis
of orientation (i.e., when ). In this situation, the orientation of the direct estimate
of G does not provide an explanation for the principal axes of population differentiation, and
selection becomes the leading contender. Arnold et al. (2001) have proposed that evolution
may occur along a selective line of least resistance, the leading eigenvector of ω (ωmax), which
may be visualized as a ridge on the Gaussian fitness surface (Phillips and Arnold 1989). This
selective line of least resistance may or may not coincide with gmax. The proposition of
evolution along a selective line of least resistance can be tested by comparing ωmax and .
MIPoD implements such a comparison by holding the orientation of one eigenvector constant
at the direct estimate from the adaptive landscape (which completely determines orientation
in the two-trait case) and fitting the remaining parameters by ML. The likelihood of this
parameter set is then compared to the best fit for all the parameter values by using a likelihood
ratio test. If this test is significant, we can reject the hypothesis that the major axis of divergence
aligns with the selective line of least resistance or that  aligns with ωmax.

Absence of Direct Parameter Estimates
Parameter separation in our hypothesis-testing framework also allows us to test aspects of the
neutral model in the absence of direct estimates of parameter values. With independent
estimates of both a complete G matrix and effective population size, we can test all hypotheses
described above. If no independent estimate of is available, N̄e one can produce a ML estimate
of ΣG/N̄e(= 2ΣM), even though one cannot test the hypothesis that total divergence is
sufficiently explained by the neutral model. Nevertheless, the tests of shape and orientation
can still be conducted because the effects of total divergence have been removed in the first
step. Conversely, in some cases, one may have estimates of effective population size and
genetic variance for each trait but no measures of genetic covariance among traits. In this case,
one can test the hypothesis at the first step of the hierarchy but produce ML estimates for shape
and orientation only in the latter two steps. If no independent estimates of any parameters are
available, one cannot reject the neutral model in any way but can still produce ML estimates
of ΣG/N̄e, ε, and ϕ by assuming a neutral model of evolution by drift.
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Test Case
Vertebral Number in Garter Snakes

Vertebral number is remarkably constant in many vertebrate groups, apparently because
deviation away from a modal number can have profoundly deleterious consequences (Galis et
al. 2006). However, vertebral number in snakes is conspicuously variable among species, with
means ranging from 100 to 300 total vertebrae. In garter snakes (Thamnophis), numbers of
body and tail vertebrae are moderately heritable and buffered from temperature effects during
development (Arnold 1988; Dohm and Garland 1993; Arnold and Phillips 1999; Arnold and
Peterson 2002). Several studies indicate that selection favors an intermediate optimum number
of vertebrae within populations of garter snakes and closely related genera (Arnold and Bennett
1984; Arnold 1988; Lindell et al. 1993). Other studies suggest that vertebral number differences
between populations and species represent adaptations to vegetation density such that open
habitats favor phenotypes with more vertebrae and brushy habitats favor phenotypes with fewer
vertebrae (Kelley et al. 1997; Manier et al. 2007).

Here we examine divergence in two traits (numbers of body and tail vertebrae) in garter snakes
across the genus Thamnophis (fig. 3). We used a phylogeny adapted from de Queiroz et al.
(2002) that is based on mtDNA sequences. Branch lengths were converted to time in
generations by using factors of 2% sequence divergence per million years (Avise 1994) and
an average generation time of 5 years (Rossman et al. 1996). In those cases in which we had
data on vertebral counts for multiple populations within a species, we created a new node at
the midpoint of the branch leading to that species on the original tree. The data are taxon means
for body and tail vertebral counts collected from a variety of sources (table A1 in the online
edition of the American Naturalist and references in the appendix). In some cases, trait means
were not available, and so medians or range midpoints were used as estimates of population
means. Vertebral counts are usually symmetrically distributed within populations, either before
or after a log transformation (Klauber 1941;Kerfoot and Kluge 1971), so such substitute
estimates of the mean are reasonably reliable. Because males and females differ in vertebral
number, we consider trait means and genetic variance/covariance for only females in all the
analyses that follow.

We use an estimate of the G matrix for body and tail vertebral counts that represents the mean
of estimates from two populations of Thamnophis elegans (Arnold and Phillips 1999; fig.
3B). To visualize a G matrix on the scale of trait values, we plot it as an ellipse with axes scaled
to 1.96 times the square root of the corresponding eigenvalue; in other words, the ellipse
represents a 95% confidence ellipse around the within-taxon genetic variation. The long axis
of the ellipse represents gmax, the leading eigenvector of G. Additional direct estimates of G
are taken individually from these two populations of T. elegans (coastal and inland,
respectively; Arnold and Phillips 1999) and from a single population of Thamnophis sirtalis
(Dohm and Garland 1993).

Manier and Arnold (2005) estimated effective population sizes within T. elegans from
microsatellite data. Their estimates were for subpopulations within an island model
metapopulation, whereas the analyses presented here consider populations with varying
degrees of internal structure as single taxa. The standard island model predicts that effective
population size is increased by population subdivision (Whitlock and Barton 1997). However,
relaxing some of the assumptions of this model, such as equal deme size or equal reproductive
output among demes, results in the observation that subdivision may often decrease rather than
increase effective population size compared to census population (Whitlock and Barton
1997). This effect may be quite pronounced in some situations (e.g., Turner et al. 2006).
Because the details of metapopulation dynamics in these taxa may vary (Paquin et al. 2006)
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and because the harmonic mean is weighted toward lower values, we use an estimate of N̄e =
500 based on the range of values reported by Manier and Arnold (2005).

We do not have direct estimates of the selection surface based on overall fitness as a function
of vertebral number for these taxa. However, two studies provide estimates of potential fitness
components as a function of body and tail vertebral counts. Both studies used the method of
Lande and Arnold (1983) to estimate coefficients of linear and nonlinear selection (β and γ)
that describe a quadratic approximation to an individual selection surface. Arnold (1988)
modeled the effects of body and tail vertebral numbers on growth rate in natural populations
of female T. elegans (n = 69) by using a quadratic regression in which the vertebral numbers
were standardized to unit variances. On the raw scale (i.e., without standardization to unit
variances), the regression equation is relative growth (mean of one) =

, where z1 is body and z2 is tail. The
elements of the γ matrix are γ11 = −0.040 (SE = 0.012, P = .03), γ22 = −0.191 (SE = 0.007, P
= .01), and γ 12 = 0.088 (SE = 0.068, P = .01). The estimated values for βi were not significantly
different from 0 (P > .05). Therefore, the negative inverse of γ approximates ω (Lande
1979), with ω11 = −1,836.5, ω22 = −384.6, and ω12 = −846.2. The orientation of ωmax is given
by ϕ = 0.4299. A selection surface is also available for crawling speed in neonatal Thamnophis
radix (n = 143) as a function of body and tail vertebral counts (Arnold and Bennett 1988). That
surface, however, was reported on log scales for both traits. We recomputed the surface by
using the raw data and obtained relative burst speed (mean of one) =

, with the following γ matrix: γ11 = −0.002
(SE = 0.007, P > .05), γ22 = −0.001 (SE = 0.010, P > .05), and γ12 = 0.008 (SE = 0.003, P = .
003). Again, the estimates for βi were not significantly different from 0 (P > .05), so that
ω11= −16.13, ω22= −32.26, and ω12= −129.0. The orientation of ωmax is given by ϕ = 0.817.

Results
We used a hierarchical hypothesis-testing approach to assess the ability of a neutral drift model
to explain the pattern of evolutionary divergence among Thamnophis taxa. In the first step of
the hierarchy, the total genetic variance and effective population size, represented by the
quotient Σ/N̄e, determine the total dispersion of population means for the two traits in a drift
model. The ML estimate for this parameter combination that best explains the data differs
significantly from empirical data (fig. 4). Estimating Σ/N̄e assuming a drift model yields
combinations in which genetic variance is far too small or effective population size is far too
large. When we fix N̄e = 500, a much smaller total genetic variance better explains the data
than does the direct estimate of G (P < .0001; fig. 5A; table A2 in the online edition of the
American Naturalist). In other words, divergence in vertebral number is far less than expected
under neutrality, suggesting that stabilizing selection—or some other restraining force—has
impeded evolution. At the next step, the ML estimate for shape (ε) also better explains the data
than does the direct estimate of G (P = .012). The ML estimate for ε is larger than the direct
estimate, meaning a longer and narrower G matrix ellipse (fig. 5B). Divergence is biased along
the axis of positive covariance between the two traits relative to the neutral prediction. In other
words, we can reject the hypothesis that differences among traits in divergence are consistent
with differences in genetic variances. At the third step of the hierarchy, adding the parameter
estimate for orientation (ϕ) significantly improves the fit of the model (P = .001). Thus, we
can reject the hypothesis that divergence occurs predominantly along the genetic line of least
resistance, gmax. The estimate for ϕ is lower than the empirical value (fig. 5C), indicating that
the primary axis of divergence lies closer to the axis of body vertebral count than does gmax.

To assess the impact of the direct estimate of the G matrix on these conclusions, we repeated
the above analyses by using the estimates of G for body and tail vertebral counts from the two
separate T. elegans populations (coastal and inland; Arnold and Phillips 1999) and from a
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population of T. sirtalis (Dohm and Garland 1993; table A2). At the first level of the hierarchy,
the same result as above was obtained for all direct estimates of size (Σ) of G. In all cases, the
direct estimate of Σ was significantly larger than the ML estimate (P < .0001 for all), suggesting
the presence of some restraining force, such as stabilizing selection, that has impeded
divergence. At the second level of the hierarchy, the results conflicted with those for the average
of the T. elegans populations. The ML estimate for shape did not significantly improve the fit
of the model over the direct estimate for either of the individual T. elegans populations (coastal:
P = .248; inland: P = .125). In contrast, the ML estimate for shape differed significantly from
the direct estimate from T. sirtalis (P = .0102), but it was smaller than the direct estimate rather
than larger, as for T. elegans. In other words, the ML estimate from the divergence data
produces a G matrix that is longer and narrower than the direct estimate from T. elegans but
shorter and fatter than the direct estimate from T. sirtalis, when orientation is held constant at
the direct estimate. Thus, the ML estimate lies within the range of variation of ε observed for
these traits among Thamnophis taxa. Finally, at the third level of the hierarchy, the results were
again consistent. The ML estimate for G matrix orientation was significantly smaller than the
direct estimate from either of the two T. elegans populations (coastal: P < .0001; inland: P = .
0009) and the direct estimate from T. sirtalis (P < .0001). For all of these direct estimates of
G, we can reject the hypothesis that divergence occurs predominantly along gmax , as predicted
by a drift model, and instead conclude that divergence has occurred in a direction closer to the
axis of body vertebral count. Interestingly, when the orientation is shifted to the ML estimate,
the ML estimate for the shape parameter becomes larger than all the direct estimates of ε. In
other words, the pattern of divergence is more closely aligned with  relative to the second
major axis of divergence, compared with the prediction from the neutral model based on any
direct estimate of G. This suggests that selection has constrained divergence to a narrower band
along  than would be predicted from the neutral model.

We also conducted the hypothesis-testing hierarchy on the average phenotypic variance-
covariance matrix P, estimated from the two T. elegans populations (Arnold and Phillips
1999). The results were similar to the results for the corresponding G matrix (table A2), with
significant results for size (P < .0001), shape (P = .0028), and orientation (P = .0015).

Two species, Thamnophis proximus and Thamnophis sauritus, have more tail vertebrae in
relation to body vertebrae than do other garter snakes, perhaps reflecting adaptation to
arboreality (fig. 3). These two species of garter snakes are more consistently found off the
ground than are other species in the genus (Rossman et al. 1996). We assessed whether these
taxa could be responsible for the rejection of the neutral model. Keeping effective population
size fixed as above, we estimated all three parameters of the G matrix both for the full data set
and for the data set with these two taxa removed (table A3 in the online edition of the American
Naturalist). These two estimates of G did not differ significantly in their ability to explain the
pattern of divergence in the full data set (likelihood ratio test; P = .2804).

Having rejected the hypothesis that population differentiation has occurred along a genetic line
of least resistance, we ask whether  might align with a selective line of least resistance.
Using estimates of ωmax from two studies of potential fitness components in garter snakes, we
found conflicting results (fig. 5D; table A3). In the case of the growth rate surface for T.
elegans, the fit of the neutral model does not differ significantly when the orientation (ϕ) is
constrained to ωmax (P = .2638). We cannot reject the hypothesis that evolution has occurred
along a selective line of least resistance corresponding to growth rate in this species, and,
indeed, those two vectors are closely aligned (fig. 5D). However, the ML estimate does differ
significantly from the orientation of ωmax from the T. radix crawling speed surface (P = .0003).
Thus, we can reject the hypothesis that divergence aligns with a selective line of least resistance
based on crawling speed. Note, too, that the crawling speed estimate of ωmax is closely aligned
with the orientation of the direct estimate of gmax (fig. 5D). This correspondence may be a
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coincidence, or it may reflect evolutionary alignment of G with a persistent adaptive landscape,
as predicted by simulation studies (Jones et al. 2007).

Discussion
Methodological Considerations

We have presented a statistical framework for inferring aspects of microevolutionary process
from the phylogenetic pattern of trait divergence among taxa by using a neutral model of
evolution. Consequently, errors can enter the framework in three places: in the data, in the
model, or in the phylogeny. We consider these sources of error in turn. With respect to the
data, the prediction of change in trait means over time is based on an assumption that the
distribution of additive genetic variation within populations is multivariate normal (Lande
1976). Nonnormal distributions of trait values can often be transformed or rescaled to
normality, and the analysis can then be performed on the transformed trait values (Lande
1976). The possibility that misleading results can be caused by only a few taxa should also be
considered. Extreme values can disproportionately influence the slope of regressions (Dunn
and Clarke 1987), and so they may especially influence the results of the orientation test in the
last step of our testing hierarchy. One simple expedient is to determine whether the neutral
model is still rejected after removing particular taxa from the data set, especially in cases where
selection is known or suspected to have acted on those few taxa. In the garter snake test case,
deletion of two species with exceptional ecology did not affect the conclusions (table A3). Care
should be taken in interpretation, however, because statistical power to reject the neutral model
may be reduced in tests of a smaller data set.

Errors arising from the neutral model enter via its central parameters, Ne and G. The most
straightforward way of dealing with the effects of Ne on the conclusions is to use values that
bound the probable range. The likelihood framework of MIPoD also produces confidence
intervals for the compound parameter Ne/Σ that can be compared to the range of direct estimates
(fig. 4). In the absence of a direct estimate, one can determine how small or large a value of
Ne would have to be invoked to account for the data with a neutral model. A wildly unrealistic
value for the organisms considered can provide grounds for rejecting the model. The neutral
model also assumes that N̄e (the harmonic average of effective population size across
generations) is equal across all branches of the phylogeny. If this assumption is known to be
violated, a correction can be applied to the phylogeny before analysis. The parameters N̄e and
t can be easily factored out of the predicted variance structure for a single population (eq. [3])
and thus factored out of each block of the phylogenetic divergence matrix A. Therefore,
estimated differences among lineages in N̄e can be incorporated by rescaling the appropriate
parts of the shared ancestry matrix T. Likewise, even though direct estimates of the G matrix
always come with error, Ḡ is treated as equal across branches in the model. Again, bracketing
the probable values of G and using the likelihood framework to calculate confidence limits for
G matrix parameters may be the best way to assess the impact of this assumption on the
conclusions. If only a single direct estimate of G is available, one could compute confidence
limits for elements (e.g., based on bootstrap resampling of parent-offspring data) and use those
to assemble extreme estimates of G. A better approach, when multiple estimates are available,
is to use those separate estimates to assess the impact on conclusions. Using this latter approach
in the garter snake test case, we found that our conclusions about size and orientation were
robust across the range of direct estimates of G, while the ML estimate of the shape parameter
lay within the range of direct estimates when the orientation parameter was held constant.

Two perspectives on the evolutionary stability of the G matrix provide contrasting views on
treating G as a constant over evolutionary time, a proposition first suggested by Lande
(1975, 1979, 1980a). According to one perspective, G may fluctuate erratically through time,
reflecting change in underlying gene frequencies (Turelli 1988; Shaw et al. 1995; Roff 2000)
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or in genes of major effect (Agrawal et al. 2001). Erratic fluctuation in G may occur especially
in small populations and for traits that experience little or no stabilizing and correlational
selection (Phillips et al. 2001; Whitlock et al. 2002). In such cases, using a single estimate of
G, or even the average of a few estimates, in an application such as MIPoD is inadvisable
because the real G is a complex time series. A second view, based on comparative studies and
computer simulations, suggests conditions under which the assumption of G matrix stability
may be satisfied. Comparisons of G matrices sampled from conspecific populations and related
species often show that the matrices have one or more principal components in common or are
even proportional (Arnold and Phillips 1999; Steppan et al. 2002). Computer simulations
suggest that G matrix stability is promoted by large effective population size and mutational
correlation (Jones et al. 2003). Persistent stabilizing (and correlational) selection may also
produce stability in G by promoting alignment of G with the major axes of the adaptive
landscape (Jones et al. 2003, 2004, 2007). A corollary expectation from this result, however,
is that adaptive landscapes that have diverged in configuration may promote divergence of
G among independently evolving populations.

A second cause for optimism in the use of a constant G is that even some types of fluctuations
in G do not violate the assumptions required in this analysis. For example, if G is drawn
independently each generation from a distribution that itself remains constant across the
phylogeny, the mean of that distribution, Ḡ, provides the correct estimate of a constant G in
the neutral model. Moreover, the strict assumption required here is only that Ḡ be equal across
all branches of the phylogeny, so that even some short-term temporal autocorrelation of G may
not substantially violate this assumption. Again, if fluctuations in G are the result of sampling
from a distribution that itself remains constant, the assumption may be satisfied or nearly so.
This underlying distribution could be considered to represent the genetic architecture of the
traits, which shapes the M matrix of mutational variation and hence G.

Ultimately, the constancy of G over evolutionary time is an empirical question meriting further
study. The advisability of using a constant estimate of Ḡ in MIPoD depends on issues that can
be addressed directly by G matrix comparisons or indirectly by information about population
size and modes of selection. The utility of MIPoD probably declines at larger taxonomic scales.
As fundamental changes in the adaptive landscapes and genetic architecture of traits become
more likely, the assumption of a constant Ḡ becomes untenable. In interpreting the results of
the analysis, it is worth remembering that rejection of the neutral model can result from
violations of the assumptions (e.g., constancy of Ḡ), as well as nonneutral evolution, and that
nonneutral evolution itself may cause shifts in G. These should be considered as alternative
interpretations of significant results.

In the absence of a direct estimate of G, one can consider using surrogates for the G matrix.
The obvious candidate is the phenotypic variance-covariance matrix P. Willis et al. (1991)
have described the perils of substituting P for G in equations that predict responses to selection.
In the present context, however, parameter separation in our hypothesis-testing hierarchy
creates a less demanding role for the P matrix. MIPoD tests whether the magnitude and pattern
of population divergence are consistent with a temporally magnified version of the G matrix.
To substitute P for G in this case, we must be prepared to argue that the two matrices are
similar, for example, that they might be proportional (Cheverud 1988; Ackerman and Cheverud
2002). Proportional matrices share shape and orientation parameters but not size parameters.
Such an argument will clearly be untenable in some circumstances. If, for example, some traits
are more prone to environmental influence than are others, P will be larger than G in those
trait dimensions, and the two matrices will not be proportional. In the garter snake test case,
we had direct estimates of both matrices for a set of six scalation traits. P and G were indeed
proportional (Arnold and Phillips 1999), perhaps because all of the traits were of a similar kind,
with comparable buffering against environmental effects (Arnold and Peterson 2002). Not
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surprisingly, when we repeated the test case using the average P matrix for body and tail
vertebral count in the two Thamnophis elegans populations (comparable to the G matrix shown
in figs. 3 and 5), we obtained the same qualitative test results at all levels of the hierarchy (table
A2). In this case, P may serve as a proxy for G because the two matrices are proportional.

The Kluge-Kerfoot phenomenon provides another rationale for evaluating divergence with
MIPoD using P matrices. Kluge and Kerfoot (1973) argued that differences among traits in
among-taxa divergence correlate with differences in within-population phenotypic variation.
Unlike predictions of divergence based on G, however, this conjecture is more a description
of pattern than a rigorous model of evolutionary process. Furthermore, objections to Kluge and
Kerfoot’s testing procedures have been raised on a variety of statistical grounds (Sokal 1976;
Rohlf et al. 1983). These objections can be circumvented by careful preliminary analysis of
data, as suggested by Rohlf et al. (1983), and testing of the conjecture in MIPoD. As in the
garter snake test case, a pooled or average estimate of P can be used to characterize phenotypic
variation and covariation within populations. The Kluge-Kerfoot phenomenon predicts
proportionality between P and D. The tests of shape and orientation in MIPoD together provide
phylogenetically corrected tests of proportionality. The test of the size parameter is less relevant
because it reflects the overall rate of evolution and is thus tied more directly to the process
model of neutral genetic drift based on G rather than P.

Errors in the branch lengths or topology of the phylogenetic trees may also affect conclusions.
Branch lengths enter the testing procedure after being calibrated to absolute time in generations.
Consequently, sensitivity of results can be assessed using alternative calibrations. In the garter
snake test case, we found that neutrality was so resoundingly rejected at the first testing step
that calibration of branch lengths could be varied by a factor of up to 36 without affecting the
conclusion. One could also test the effect of different generation times among lineages by
constructing alternative matrices of shared ancestry T. Sensitivity to alternative topologies
could be addressed in a similar fashion. Alternative topologies might be derived from molecular
data partitions or alternative kinds of characters, alternative procedures for tree inference, or
rivals under a particular criterion for tree evaluation. In any of these cases, alternative trees can
be analyzed so that effects on conclusions can be assessed. In the garter snake test case, tree
alternatives were not available to perform this kind of assessment.

Implicit in the testing hierarchy of MIPoD is a test of phylogenetic signal. The neutral model
of drift, as a Brownian motion process, predicts a linear increase in variance over time and thus
the linear relationship between shared ancestry and covariance described above. In contrast,
various forms of selection cause a decay in covariance between independently evolving taxa
after speciation and thus a decay of phylogenetic signal (Hansen and Martins 1996). If a data
set lacks phylogenetic signal (i.e., the linear relationship between divergence and time
predicted by the neutral model), MIPoD will likely reject the neutral model at one or more
steps in the hierarchy. However, MIPoD may still reject the neutral model even in the face of
phylogenetic signal. For instance, consider a situation in which taxa evolve toward selective
optima that themselves move independently by Brownian motion (Felsenstein 1985; Estes and
Arnold 2007). In this case, phylogenetic signal might be preserved, but MIPoD would likely
reject the neutral model, unless the movement of optima happened to be similar to the neutral
model in two further respects. First, the rate of movement of optima would have to be similar
to the neutral rate of drift predicted from total genetic variation and effective population size.
Second, the variance/covariance pattern of Brownian motion of optima would have to be
proportional (in terms of shape and orientation) to the G matrix.

Interpretation of Results
The framework we have presented identifies a set of specific hypotheses about
microevolutionary process that can be tested in a hierarchical fashion in terms of the G matrix.
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At the first step in the hierarchy (table 2), we test the neutral model in terms of the total amount
of divergence among taxa. In the garter snake example, we rejected this aspect of the neutral
model, given direct estimates of G and effective population size. Much less divergence among
taxa was observed than was predicted under drift. This step is analogous to a univariate rate
test of trait evolution (e.g., Lande 1977;Turelli et al. 1988;Lynch 1990). When parameterized
with reasonable values for the drift process (effective population size and genetic variance),
the univariate neutral prediction of divergence over time typically fails to explain observed
data (Lynch 1990;Estes and Arnold 2007). Underprediction on short timescales suggests that
diversifying selection has produced departures from neutrality. This result is common in studies
of divergence among local populations, for example, when assessed by FST-QST comparisons
(Merilä and Crnokrak 2001;McKay and Latta 2002). On such short timescales, adaptation to
spatially varying selection is often rapid, so that phenotypic divergence exceeds neutral rates.
On longer timescales, however, the situation is often reversed. Here the failure of the neutral
model reflects the neutral prediction that trait variance among replicate populations will
increase linearly with time. In actual evolving lineages, however, divergence is rarely so
extensive (Estes and Arnold 2007). Consequently, when we consider radiations of related
species and genera, we find divergence to be less than expected under neutrality, as in the garter
snake test case.

Such a result suggests factors that could restrain divergence and diversification. In many
situations, stabilizing selection toward an intermediate optimum with restrained movement is
undoubtedly the leading candidate (Hansen 1997; Estes and Arnold 2007). Other nonselective
possibilities should be explored, however. Migration and hybridization, for example, can
compromise the effects of diversifying selection and so might yield rates less than expected
under neutrality with the assumption of independently evolving populations. Alternatively, we
might hypothesize that genetic constraints limit trait divergence among taxa. The G matrix
itself represents genetic constraint by describing the amount and multivariate structure of
genetic variation available to evolution. Because the neutral model incorporates the G matrix
in its predictions, however, to attribute failure of the neutral model to some form of genetic
constraint requires some additional assumptions about process. A systematic reduction in
genetic variation as divergence proceeds might produce such a limit to divergence. However,
such a reduction is not supported by empirical evidence from artificial selection experiments,
in which selection is typically much stronger than in nature (Hill and Caballero 1992). This
hypothesis of diminished genetic variation could also be tested by gathering direct estimates
of G from populations or taxa at the extremes of trait values in a radiation. If these estimates
of G show a reduction in variation, particularly along axes that correspond to reduced levels
of among-taxa divergence, this hypothesis could be supported.

The next two steps in our hypothesis-testing framework have no direct analogy in univariate
evolution. Furthermore, they are independent of the overall rate of evolution, which was
accounted for in the first step. Together, they constitute a test of proportionality between G
and the divergence matrix, D. The shape test at the second step can identify combinations of
traits that are evolving faster or slower than neutral expectations. Note that even if the rate test
at the first step revealed an overall rate slower than expected under neutrality, some traits may
nevertheless have evolved at a faster than neutral rate. Such disparities among traits can have
multiple causes. Although stabilizing selection is a leading candidate cause of slower rates
(Estes and Arnold 2007), in some cases other factors such as hybridization or selection limits
may be at play. Likewise, rates that are accelerated relative to neutrality imply diversifying
selection, but many varieties are possible. An adaptive peak may be prone to move in the trait
direction that is exaggerated relative to neutral expectations. Alternatively, that trait direction
might be populated by multiple peaks, with populations shifting among them. The overall
significance of the shape test is that it may reveal differences among traits in selection mode
and intensity.
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The focus at the third step is on the direction rather than the amount (or rate) of evolution. An
important prediction of the neutral model is that inheritance and population divergence will
have identical axes of variation. In other words, the G and D matrices will have common
principal components (i.e., identical eigenvectors). We learn more by rejecting this hypothesis
than by failing to reject it. Coincidence of gmax and , and so on for the other eigenvectors
of the two matrices, is consistent with neutrality. It also may be consistent with an early stage
in adaptive radiation in which populations are far from an adaptive peak and evolving in
response to selection in a direction that is biased by the G matrix, as argued by Schluter
(1996). When the eigenvectors of G and D are aligned, other explanations are possible as well.
For some kinds of traits, design limits and other kinds of selective constraints may produce
ridges in the adaptive landscape and also predispose the adaptive peak to move in the direction
of the landscape’s leading eigenvector. We call this direction the selective line of least
resistance, by analogy with gmax (Arnold et al. 2001). A persistent stabilizing landscape of this
kind can promote coincidence of gmax with its leading eigenvector (Jones et al. 2007) as well
as coincidence of these two with . In other words, coincidence of gmax and  is consistent
with a variety of scenarios, neutral and otherwise. In contrast, if we reject the hypothesis of
common eigenvectors for G and D, we can certainly conclude that neutral evolution is not
responsible for the direction of population diversification.

When G and D do not share common eigenvectors, as in the garter snake test case, we can ask
whether the orientation of the adaptive landscape helps account for the axes of variation in
divergence (i.e., the eigenvectors of D). To test this hypothesis, we need estimates of the
individual selection surface, which in turn can be used to approximate the adaptive landscape.
In particular, if stabilizing selection is weak, then the coefficients that describe the curvature
and orientation of the individual selection surface also provide a reasonable approximation of
the adaptive landscape (Lande and Arnold 1983; Phillips and Arnold 1989). Both of the
approximated surfaces for garter snake data show weak curvature (i.e., small values in γ or
large values in ω) and so support this assumption. In neither case, however, do the surfaces
represent lifetime fitness as a function of the two vertebral counts. The two measures, crawling
speed and growth rate, likely represent components of fitness but perhaps not major
components. Nevertheless, the result that one of these two surfaces has an orientation that
coincides with the principal axis of population divergence, in contrast with any direct estimates
of G, suggests that the adaptive landscape may share some orientation with D. This possibility
needs to be tested with additional selection studies. In the meantime, at least two interpretations
are consistent with the shared orientation that we observed. First, all populations reside on the
same adaptive landscape, with a dispersion of population means that represents a balance
between drift and stabilizing selection (Lande 1976). Second, individual populations reside at
or near private adaptive peaks, according to the balance of forces just described, but over
evolutionary time, the peaks tend to move along a selective line of least resistance. Under this
second interpretation, in the garter snake test case, this line was approximated by the estimate
of from the T. elegans growth rate data. ωmax

Prospects
While G has been a player in comparative studies, its role has been surprisingly small.
Nonetheless, G has been used in diverse applications that include (1) description and
comparison of genetic constraints (e.g., Arnold 1992; Cheverud 1995; Steppan et al. 2002),
(2) assessing the consequences of alternative schemes of directional selection (e.g., Cheverud
et al. 1983), (3) retrospective analysis of selection using divergence data (Lande 1979; Price
et al. 1984; Schluter 1984; Arnold 1988; Dudley 1996; Reznick et al. 1997; Jones et al.
2004), (4) estimation of generalized genetic distance (Lande 1979; Schluter 1984), (5) testing
for evolution along genetic lines of least resistance (Schluter 1996), and (6) testing for
proportionality between G and matrices of population divergence (Lofsvold 1988; Blows and
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Higgie 2003; Bégin and Roff 2004; McGuigan et al. 2005). Despite these applications, G has
not been used in a variety of other circumstances in which it is likely to supply critical
information. For example, so far as we know, G has not been used to (1) weight characters in
the inference of phylogenetic trees (but see Schaffer 1986), (2) model trait evolution on
phylogenies, or (3) reconstruct ancestral character states. In some cases in which G might be
used, it figures in the formulation of methodology but plays no role in actual tests (Martins and
Hansen 1996, 1997). In other cases, G plays a cryptic role, hidden within a compound parameter
that is used to represent the combined effects of finite population size, genetic constraints, and
stabilizing selection (Hansen 1997; Butler and King 2004). Parameterizations that separate
these diverse contributions have multiple advantages. By using models with explicit, separate
terms for inheritance, selection, and population size, one can determine whether each of these
factors takes realistic values (Estes and Arnold 2007). In addition, by using such an approach
in MIPoD, one can directly incorporate information about population size and genetic
constraints into the analysis of divergence data.

Looking to the future, we can ask what could be gained by using the G matrix in the
methodologies of comparative study. A grand hope is that we might be able to deduce the
modes and patterns of selection that drive adaptive radiations. By using the G matrix in our
comparative methods, we should be able to separate the effects of genetic constraint from those
of selection. The most powerful format for accomplishing this separation is the family of
stochastic models developed by Lande and associates to describe population differentiation
during neutral or adaptive radiations (Lande 1976, 1985, 1986; Hansen and Martins 1996;
Lande and Shannon 1996). The neutral model that we have used in MIPoD is the simplest basal
member of the family. Models that incorporate selection are usually cast in terms of an adaptive
landscape with a peak that is stationary or that moves in any of a variety of ways. A
generalization emerging from the models that have been developed so far is that the G matrix
affects differentiation during the early stages of a radiation, but its influence decays through
time exponentially (Hansen and Martins 1996; Schluter 1996; Estes and Arnold 2007).
Exceptions are found in certain kinds of landscapes, namely, those in which the peak moves
systematically, for example, in a progressive fashion (e.g., Lynch and Lande 1995; Jones et al.
2004). If the peak moves randomly (e.g., as in Brownian or white noise motion), so that there
is no change in average position over time, the influence of G decays over time (Hansen and
Martins 1996). Thus, the separation that we hope for in resolving the roles of constraint and
selection occurs naturally in some kinds of adaptive landscape models, assuming that we do
our analysis on the right timescale. In situations in which the movement of adaptive peaks
includes a systematic component, we will need to use G to fully characterize the role of
selection.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Two examples showing that the theoretical pattern of neutral divergence is proportional to the
G matrix. The axes in each plot represent population mean values of two traits. A, Five
simulated replicate populations share a common G matrix for two traits and have evolved
independently by drift from a single common ancestor with trait values at the center of the plot.
Evolution of the five populations was simulated for 1,000 generations, with final populations
shown as dots. The G matrix (solid ellipse) is plotted as a 95% confidence ellipse. The five
replicate populations represent a sample from a predicted probability distribution of
divergence, represented by the D matrix (dashed ellipse). In this example, Ne = 100, so at t =
1,000 generations, D(t) = 10G (eq. [3]). B, Identical simulation conditions as in A, except that
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G has a different shape (ratio of eigenvalues), producing a different prediction for divergence,
D(t).
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Figure 2.
Covariance as a result of shared ancestry. A, Simulated evolution by drift of a single trait in a
phylogenetic context, with speciation events at generation 200 and again at generation 800
(arrows). In this example, G = 1 and Ne = 100. B, Correlation between taxa in trait values
decays after speciation. The two axes represent the values of the trait means in two taxa. The
three pairs of trait means at generation 1,000 (dots) are a single sample from a trivariate normal
probability distribution specified by equation (9). Expected variances and covariances of this
probability distribution, calculated on the basis of the phylogeny in A and a neutral model, are
shown as 95% confidence ellipses. The expected covariance between taxa y and z (solid
ellipse) is relatively high because the period of common ancestry is relatively long (800
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generations). In contrast, the covariance between x and y and between x and z (dashed
ellipse) is relatively low because the period of common ancestry is shorter (200 generations).
The variances of the distributions predicting each taxon individually are identical.
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Figure 3.
A, Evolution of body (filled bars) and tail (open bars) vertebrae in garter snakes. Phylogeny
adapted from de Queiroz et al. (2002). Species are in the genus Thamnophis unless otherwise
indicated. Scale bar = 2% sequence divergence in mtDNA. B, Scatterplot of trait means. The
two taxa near the top of the plot are Thamnophis proximus and Thamnophis sauritus. The
ellipse represents the mean G matrix from two populations of Thamnophis elegans (Arnold
and Phillips 1999) and is plotted as a 95% confidence limit for within-population genetic
variation, centered on the expected trait values for the data set (eqq. [12]).

Hohenlohe and Arnold Page 28

Am Nat. Author manuscript; available in PMC 2008 June 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Maximum likelihood estimate (solid line) and 95% confidence limits (dashed lines) of the
parameter combining total genetic variance (Σ) and effective population size (Ne), keeping
shape and orientation of G fixed at the direct estimates for Thamnophis elegans (Arnold and
Phillips 1999). The point estimate (cross) represents estimates in T. elegans for Σ from Arnold
and Phillips (1999) and for from Manier and Ne Arnold (2005; error bars represent range of
values for each parameter). The model fit is significantly better for the estimated combined
parameter (likelihood ratio test; P < .0001).
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Figure 5.
Visualization of stepwise hypothesis testing in the garter snake test case, starting from the mean
G matrix for Thamnophis elegans from Arnold and Phillips (1999; see table A2 in the online
edition of the American Naturalist). A, The maximum likelihood (ML) estimate for size (Σ;
solid red ellipse; scaled to N̄e = 500) with 95% confidence limits (dashed red ellipses),
compared with the direct estimate of the G matrix (black ellipse). B, The ML estimate for shape
(ε; blue ellipse) compared with the ML estimate from A (dashed red ellipse). Note the change
in scale from A. C, The ML estimate for orientation (ϕ; green ellipse) compared with the
estimate from B (dashed blue ellipse). D, Estimates of the orientation of ωmax from growth
rate in T. elegans (black line) and crawling speed in Thamnophis radix (red line) plotted with
the direct estimate of gmax (dashed blue line) and  (dashed green line).
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Table 1
Variables used in the analyses

Symbol Size Definition

m Scalar Number of traits
n Scalar Number of taxa
z¯t m Vector of population mean trait values at time t
Ne Scalar Effective population size
N̄e Scalar Harmonic mean of Ne over multiple generations
G m-by-m Matrix of additive genetic variances and covariances for m traits within a population
Ḡ m-by-m Arithmetic mean of G over multiple generations
λI Scalar Eigenvalue i of G
gi m Eigenvector i of G
gmax m Leading eigenvector (first principal component) of G; genetic line of least resistance
Σ Scalar Size parameter (trace) of G
ε m − 1 Vector of shape parameters of G
ϕ (m2 − m)/2 Vector of orientation parameters of G
M m-by-m Matrix of mutational (co)variance per generation
D(t) m-by-m Divergence matrix of trait (co)variance among independently evolving populations

at time t
dmax M Leading eigenvector (first principal component) of D

M Major axis of divergence after correcting for phylogeny; equivalent to maximum
likelihood estimate of assuming a neutral model gmax

γ m-by-m Matrix of quadratic coefficients of stabilizing and correlational selection within a
population

ω m-by-m Matrix of coefficients (analogous to variances and covariances) describing a Gaussian
fitness surface

ωmax m Leading eigenvector of ω; selective line of least resistance
T n-by-n Matrix of shared ancestry among taxa (time in generations)
A (m × n)-by-(m × n) Divergence matrix of trait (co)variance among populations with shared ancestry
μ (m × n) Vector of expected trait means across taxa
ζ (m × n) Vector of observed trait means across taxa
θ Varies with model Vector of parameter values
ẑ;0 m Vector of maximum likelihood estimates of ancestral trait means

Note: Bold type indicates vectors or matrices. All vectors are column vectors. Transposed vectors are indicated in the text by a prime, inverse matrices
by an exponent of −1, and determinants of matrices by | |.
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Table 2
Hypothesis-testing hierarchy

Additional ML parameter estimate df Interpretation of significant LRT Analogous step in Flury hierarchy

None … Null model benchmark …
Size (Σ/N̄e) 1 Total amount of divergence either more or less than expected Equal vs. proportional
Shape (ε) (m − 1) Divergence biased among axes of genetic variation Proportional vs. full CPC
Orientation (ϕ) (m2 − m)/2 Major axes of divergence differ from axes of genetic variation Full CPC vs. unrelated

Note: At each step, an additional parameter underlying G matrix structure is estimated by maximum likelihood (ML), and the fit of the model is compared
to the previous step by a likelihood ratio test (LRT). A significant result at each step suggests a different type of deviation from the neutral expectation.
This testing procedure is somewhat analogous to the Flury hierarchy for comparing G matrices (Phillips and Arnold 1999; CPC indicates common principal
components). In cases with more than two traits, the final two levels can be expanded to test individual shape and orientation parameters.
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